"=
| B
=l

Using Parameter Sweep in WaterTAP to
Analyze New Water Treatment
Technologies

Kinshuk Panda,’ Bernard Knueven,! Ethan Young,' Sam
Helman,! Jeffery Allen,! and Alexander V. Dudchenko?

1 National Renewable Energy Laboratory
2 SLAC National Accelerator Laboratory

NREL is a national laboratory of the U.S. Department of Energy Technical Report
Office of Energy Efficiency & Renewable Energy NREL/TP-2C00-90162
Operated by the Alliance for Sustainable Energy, LLC September 2024

This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08G028308

Using Parameter Sweep in WaterTAP to
Analyze New Water Treatment

Technologies

Kinshuk Panda,’ Bernard Knueven,! Ethan Young,' Sam
Helman,! Jeffery Allen,' and Alexander V. Dudchenko?

1 National Renewable Energy Laboratory
2 SLAC National Accelerator Laboratory

Suggested Citation

Panda, Kinshuk, Bernard Knueven, Ethan Young, Sam Helman, Jeffery Allen, and
Alexander Dudchenko. 2024. Using Parameter Sweep in WaterTAP to Analyze New
Water Treatment Technologies. Golden, CO: National Renewable Energy Laboratory.
NREL/TP-2C00-90162. https://www.nrel.gov/docs/fy240sti/90162.pdf.

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC

This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08G028308

Technical Report
NREL/TP-2C00-90162
September 2024

National Renewable Energy Laboratory
15013 Denver West Parkway

Golden, CO 80401

303-275-3000 » www.nrel.gov

https://www.nrel.gov/docs/fy24osti/90162.pdf

NOTICE

This material is based upon work supported by the National Alliance for Water Innovation (NAWI), funded by the
U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing
Office, under Funding Opportunity Announcement Number DE-FOA-0001905. M.S.M also acknowledges funding
from the National Science Foundation under award number CBET-1554117 and U.S. Department of Energy’s Office
of Energy Efficiency and Renewable Energy (EERE) under award number DE-EE0008397. A portion of this
research was performed using computational resources sponsored by the U.S. Department of Energy's Office of
Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory. The views
expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. ChatGPT was
used to assist in the preparation of the Introduction, Methods, and Results chapter of the manuscript. The U.S.
Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S.
Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published
form of this work, or allow others to do so, for U.S. Government purposes.

This report is available at no cost from the National Renewable
Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991
and a growing number of pre-1991 documents are available

free via www.OSTI.gov.

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,
NREL 46526.

NREL prints on paper that contains recycled content.

http://www.nrel.gov/publications
http://www.osti.gov/

Executive Summary

We describe a powerful and generalized parameter sweep tool in this report that was originally developed to analyze
the performance of existing and novel water treatment models being developed in WaterTAP (Beattie et al. 2021).
Since WaterTAP is built upon IDAES (Lee et al. 2021; Lee et al. 2018; The IDAES Process Systems Engineering
Framework) and Pyomo (Hart, Watson, and Woodruff 2011; Bynum et al. 2021) , the parameter sweep tool can be
used to systematically explore and debug the behavior of most Pyomo and IDAES numerical models.

In order to enable meaningful analyses, the parameter sweep tool has been designed with the following features:

Model flexibility: The parameter sweep tool does not enforce any restrictions on the types of models that can
be used with it. As long as a Pyomo model can be solved and the parameter is active and mutable, the tool
only needs functions that describe how to run the model, the sweep parameters, and the output quantities of
interest.

Flexible sampling: The parameter sweep tool has inbuilt functions to generate samples from a random distribu-
tion or a multidimensional Euclidean space. Furthermore, the users have to ability to supply samples generated
from a tool of their choice

Multiple sweep types: A user can choose from one of 3 types of parameter sweeps depending on their needs.

Detailed outputs: Outputs generated by the parameter sweep tool can be stored in detailed H5 file or user-
friendly CSV files for post processing.

Parallel computing: The parameter sweep supports shared and distributed memory parallel computing to
enable the use of high performance computers (HPC) for large-scale analyses.

Modular: The parameter sweep tool is self-contained and can easily be integrated within an outer-loop analy-
sis or as desired by the user.

Ease of use: The tool is well documented and a simple sweep can be easily executed by following the online
documentation in a few lines of code.

We demonstrate the use of the parameter sweep tool on a simple water treatment system from the WaterTAP repos-
itory and show its parallel scaling performance on an Apple laptop and NREL’s Eagle HPC. The parameter sweep
tool is actively being used with models currently being developed within WaterTAP and we expect its use to grow
beyond it to other IDAES and Pyomo models.

iv

Acknowledgments

This material is based upon work supported by the National Alliance for Water Innovation (NAWI), funded by the
U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing
Office, under Funding Opportunity Announcement Number DE-FOA-0001905. M.S.M also acknowledges fund-
ing from the National Science Foundation under award number CBET-1554117 and U.S. Department of Energy’s
Office of Energy Efficiency and Renewable Energy (EERE) under award number DE-EE0008397. A portion of
this research was performed using computational resources sponsored by the U.S. Department of Energy’s Office
of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory. The views
expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. ChatGPT was
used to assist in the preparation of the Introduction, Methods, and Results chapter of the manuscript. The U.S. Gov-
ernment retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government
retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this
work, or allow others to do so, for U.S. Government purposes.

Table of Contents

Executive SUMMAry e e e e iv
Acknowledgments L L L e e e e e e e v
Introduction e 1

2 Methods e e e e e 3
2.1 Model Compatibility e e 3
2.1.1 WaterTAP Models e e e 3

2.2 The Parameter Sweep Tool 4
221 Sampling Types o e 4

222 Sweep TYPes o o e e e 4

2.3 Parallel Manager e e e e e e 6

3 ResUls e e 8
3.1 Water Treatment Model 8

3.2 Single-Variable Parameter Sweep e 8

3.3 Multi-Variable Parameter Sweep 8

3.4 Differential Parameter Sweep 10

3.5 Parallel Scalability 10

4 ConcluSioNS e 13
References e e 16
Appendix A Parameter Sweep Options e e 17
Appendix B Generative Al Prompts and Responses e 19

List of Figures

Figure 1. Full treatment train for seawater desalination. The dashed boxes indicate a basic unit of operation
and the icons represent the models (Bartholomew 2022). 3

Figure 2. Flow chart depicting the simplest parameter sweep algorithm. 5

Figure 3. Flow chart depicting the recursive parameter sweep algorithm that guarantees a specified number

of samples. e e e e e 6
Figure 4. Flow chart depicting the parameter sweep algorithm that enables differential sampling at a nomi-

nal value. L 7
Figure 5. Diagram of RO with ERD flowsheet (Atia). 8
Figure 6. Variation in LCOW, specific energy consumption, and membrane area as a function of membrane

water permeability. oL 9
Figure 7. Two variable parameter sweep that shows variation in LCOW over the swept domain. 10

Figure 8. Box plot from a stochastic value of innovation analysis using the differential parameter sweep.
The narrower the box plot, the more consistent improvement in LCOW should be expected. The whiskers
denote the best and worse cases. 11

Figure 9. Strong scaling results when using concurrent futures for running parameter sweep with on the
RO with ERD flowsheet with 2500 samples. 12

Figure 10. Strong scaling results when using MPI for running parameter sweep on NREL’s Eagle HPC. Two
flowsheets, RO with ERD and LSRRO, are considered for this analysis. Both exhibit linear scaling. . .. 12

vi

List of Tables

Table 1. A list of sampling types currently supported by the WaterTAP parameter sweep tool. 4
Table A.1. Parameter Sweep inputs that leverage Pyomo’s configuration system 17
Table A.2. Arguments to the parameter_sweepmethod. 18

Table A.3. Configuration options for ParameterSweepWriter class. 18

vii

1 Introduction

Advances in computing and numerical modeling have enabled researchers to develop and rigorously assess novel
technologies across multiple domains. These technologies often depend on several input parameters and their re-
sulting impact on the output is not known ahead of time. This has given rise to the field of optimization, sensitivity
analysis, and uncertainty quantification, where several techniques have been developed to quantify how the outputs
change with a change in inputs (Nocedal and Wright 2006; Sobol 2001; Saltelli et al. 2007; Cacuci 2003; Smith
2013; Razavi and Gupta 2015). Parameter sweep is one way of performing optimization, sensitivity analysis, and
uncertainty quantification where experiments are run repeatedly with a different set of input parameters (Youn and
Kaiser 2010; Ino et al. 2014; Pacini, Mateos, and Garino 2013). These input parameter values may either be selected
from a pre-determined multi-dimensional grid space, e.g., linear space, geometric space, log space, or sampled from
a probability distribution, e.g., normal or uniform distribution.

Parameter sweep has, in particular, been very effective in identifying critical areas of innovation in emerging water
treatment technologies (Dudchenko, Bartholomew, and Mauter 2021), including osmotically assisted reverse osmosis
(OARO) (Bartholomew et al. 2017; Bartholomew, Siefert, and Mauter 2018), high-pressure reverse osmosis (HPRO)
(Davenport et al. 2018; Davenport 2020), low-salt-rejection reverse osmosis (LSRRO) (Atia et al. 2023), cascading
osmotically mediated reverse osmosis (COMRO) (Chen and Yip 2018; Atia, Yip, and Fthenakis 2021), mechanical
vapor compression (Onishi et al. 2017), electrodialysis (Patel et al. 2024), and membrane distillation (Bartholomew
et al. 2020). For example, Atia et al. (2023) demonstrated that increasing the maximum allowable pressure in
LSRRO can reduce process levelized cost of producing water (LCOW) by 22%, and Bartholomew, Siefert, and
Mauter (2018) used parameter sweep to quantify the impact of improving membrane structure, burst pressure, and
component costs on minimizing the cost of OARO.

Some of the aforementioned work leveraged WaterTAP (Beattie et al. 2021; WaterTAP development repository;
Bartholomew 2022) which is an open-source Python (Van Rossum and Drake 2009) package created to facilitate
modeling and analysis of water treatment technologies. WaterTAP leverages powerful equation-oriented modeling
methods to solve large and complicated models efficiently, thereby enabling the application of parameter sweep
methodology to the analysis of emerging processes with a high number of dimensions and level of detail.

WaterTAP leverages the open-source Institute for the Design of Advanced Energy Systems (IDAES) Integrated
Platform (Lee et al. 2018; Lee et al. 2021; The IDAES Process Systems Engineering Framework) which is a process
modeling framework that allows modular construction of engineering process systems for a wide variety of indus-
trial applications, including water treatment. Various components of a water treatment system can be modeled as
unit models based on the IDAES framework. These unit models can then be combined into a process flowsheet to
represent the operation of a water treatment train.

The equation oriented modeling and optimization of process systems within IDAES is enabled by Pyomo (Hart,
Watson, and Woodruff 2011; Bynum et al. 2021) which is a python-based open-source high-level framework for
modeling algebraic optimization problems. Pyomo allows a modeler to define the underlying mathematical problem,
initialize, modify, and solve it with an external solver. It allows for a large optimization problem to constructed using
smaller sub-problem blocks which is very amenable to modeling processes within the IDAES framework. Pyomo
provides the interface to multiple open and closed solvers, including open-source IPOPT (Wichter and Biegler
2006), that can be used to initialize and solve the numerical problem.

In this report, we describe a modular and flexible parameter sweep tool that was originally developed for analyzing
WaterTAP models but can also be used with any Pyomo or IDAES model. This parameter sweep tool accepts func-
tions that build, modify, and solve a Pyomo model, and can also leverage parallel processing for multiple parameter
combinations at once. A user may perform sweeps for multi-objective optimization where a single parameter metric
is changed and the whole process can be re-optimized for the target objective (e.g., minimize LCOW) and desired
treatment target (e.g., feed water composition and water recovery). This ensures that, as parameters are changed, the
impacts can be directly compared since the overall performance target of the process does not change.

The parameter sweep module has sampling tools that allow a user to sample the parameter space from either a
probability distribution, a Latin hypercube, or a Euclidean space. The tool, furthermore, boasts features that allow
a user to customize sweeps with hard-to-solve Pyomo problems, something that is often true for water treatment
models.

The remainder of the report is organized as follows. Chapter 2 describes the parameter sweep tool in detail. Chap-
ter 3 demonstrates how the parameter sweep tool can be used for analyzing WaterTAP models. Finally, Chapter 4
summarizes and highlights the capability of the parameter sweep tool and provides insight for future development.

2 Methods

We briefly describe the models compatible with the parameter sweep tool below before delving into the details in the
subsequent section.

2.1 Model Compatibility

While the parameter sweep tool was originally intended for use with WaterTAP models, it is immensely flexible and
compatible with any Pyomo or IDAES model. In fact, the unit tests that check the functionality of the tool employ
simple problems constructed directly in Pyomo.

In order to conduct a successful parameter sweep, a Pyomo, IDAES, or WaterTAP model should be well-posed and
have a feasible solution that can be obtained using a compatible optimizer such as IPOPT (Wichter and Biegler
2006). Any variable, expression, parameter, or objective in the aforementioned model that is active and mutable can
be swept over using the parameter sweep tool regardless of the model’s complexity. The parameter sweep expects
some helper functions and corresponding keyword arguments that describe how to build the model, how to initialize
it, the sweep parameters, which outputs to record, and how to solve or optimize the model.

2.1.1 WaterTAP Models

As mentioned in Chapter 1, WaterTAP enables techno-economic assessment of a broad array of water treatment
technologies. It contains a library of various technology models, e.g., ion-exchange, granulated activated carbon
adsorption, reverse osmosis, etc., that can be combined to simulate specialized full treatment trains. Additionally,
WaterTAP currently contains example flowsheets for conventional treatment trains that can be used as a baseline to
compare emerging technologies.

WaterTAP technology models can be further broken down into basic units of operations that can be split into 3
major categories, viz., property models, unit models, and costing models. Property models describe the physical
properties, e.g., density, temperature, viscosity, etc., and chemical properties, e.g., kinetic and equilibrium reactions,
of water. They can also describe biological processes. Unit models describe the performance of the equipment such
as efficiency, water recovery, and energy consumption. Lastly, costing models describe the capital and operational
costs associated with the treatment system. These units of operations can be combined into a full treatment train as
shown in Fig. 1. Users can implement additional models using the Pyomo and IDAES API. Finally, the flowsheet is
optimized using the nonlinear optimizers, e.g., [IPOPT (Wichter and Biegler 2006) with HSL solvers (HSL(2013). A
collection of Fortran codes for large scale scientific computation).

Chlorination
Coagulation

1 Dechlorination
Pump pH adjustment RO

Seawater Ichemica Coarse N\ Fine _hemical
Treat. Filter } { Filter Treat.

N

Reverse osmosis High pressure Reverse osmosis High pressure
pump pump

|
i
. B ’
Product _ 7\, S?t?:;lllca :; e « o Mixer
water 4 1L L1
e e
Concentrate
Post-treatment Disposal
Energy Brine
»Recovery T >
System
L Recycle

Figure 1. Full treatment train for seawater desalination. The dashed boxes indicate
a basic unit of operation and the icons represent the models (Bartholomew 2022).

2.2 The Parameter Sweep Tool

Robustness and ease-of-use were especially important considerations while developing the parameter sweep tool.
Specifically, it has been designed to be approachable to researchers and students with basic python programming
experience while also offering advanced users the ability to add custom functions for looping that would make their
analyses more meaningful. The user can invoke a parameter sweep for a flowsheet using one function call.

We discuss the two major concepts that dictate how the parameter sweep tool behaves during an analysis, viz, the
sampling type and sweep type. The former dictates what types of samples are generated, while the latter dictates how
a sweep is executed.

2.2.1 Sampling Types

To facilitate parametric sweeps, the parameter sweep tool enables "fixed" sampling and "random" sampling. Within
the fixed sampling category, the parameter sweep allows the creation of evenly spaced samples on a linear or log
scale. While, in random sampling, the user can sample input parameters from normal and uniform distributions. The
parameter sweep tool uses NumPy (Harris et al. 2020) functions to generate these samples. In addition, users can
employ Latin hypercube sampling (LHS) that is enabled through the IDAES API for efficient sampling. Lastly, users
also have the ability to generate samples using the tool of their choice and supply them to the parameter sweep tool.
Table 1 summarizes the different sampling techniques that are currently supported by the parameter sweep tool.

When studying the impact of multiple parameters on a quantity of interest, a user can pick any sampling type for the
different parameters within fixed sampling or random sampling category. However, they cannot mix sampling types
between the two categories, i.e., all the sampling types have to be either fixed or random. This is because of the way
the samples are constructed for the parameter sweep. Fixed sampling uses an outer product to construct a mesh-grid
of sampled points while random sampling samples the parameters from their respective distribution or hypercube and
stacks them into a multi-dimensional array.

2.2.2 Sweep Types

The simplest analysis a user can perform is the basic parameter sweep shown in Figure 2. Here, the tool samples
the sweep parameters, solves the flowsheet with the sampled parameter values, and finally records the outputs in

an H5 or a CSV file. To get started with a basic analysis, the user needs a function that creates a python dictionary
containing the sampling information for the sweep parameters. Next, they need to provide how many samples they
want in their sweep, separate functions and keyword arguments for building the flowsheet model, initializing it,
optimizing the model, and lastly, output HS and/or CSV file name. The user can choose to specify the outputs they
wish to record in the output file. This can be done by providing a function that points to the objects in the Pyomo
model. If no output function is specified, the parameter sweep records all the variables, expressions, and objectives
in the output file. Lastly, users can execute the parameter sweep in parallel by specifying a parallel backend and the
number of parallel processes. This reduces the total compute times significantly for complex models and is discussed
further in Section 2.3.

Table 1. A list of sampling types currently supported by the WaterTAP parameter sweep tool.

Category Sampling Type Class Name Description
Linear LinearSample Creates evenly spaced samples on a linear
Fixed Sampling scale
Geometric GeomSample Creates evenly spaced samples on a log scale
through geometric progression
Reverse geomet- ReverseGeomSample Creates sampling on the log scale where more
ric samples are created close to the upper limit.
Pre-determined PredeterminedFixedSample Accepts an array or list of values to work
within the fixed sampling framework
Normal sampling NormalSample Samples from a normal distribution
Random Sampling Uniform UniformSample Samples from a uniform distribution
Latin Hypercube = LatinHypercubeSample Generates samples from a Latin hypercube
Pre-determined PredeterminedRandomSample Accepts an array or list of values to work

within the random sampling framework

Initialize
ParameterSweep

Sample sweep

Start parameters for

object for a \
flowsheet samples

No—| Write H5 file End

While i < Nsamples

Yes

Solve
flowsheet
model for ith
case

Collect
inputs,
outputs, and
solve status

Figure 2. Flow chart depicting the simplest parameter sweep algorithm.

For complex or computationally expensive water treatment trains where certain model configurations generated
as part of the parameter sweep may not be feasible or extremely hard to solve numerically, the parameter sweep
provides additional tools to aid analysis. This includes the ability to reinitialize the model with a user specified
function (including reading values from file), logging the model state, specify probe functions for inexpensively
rejecting invalid configurations, and publish progress when using the graphical user interface (GUI). Keyword
arguments that enable these features are described in Appendix A.

Alternatively, when investigating the impact of novel technologies where parameters are drawn from a probability
distribution or when the bounds on the parameters are not clearly defined, a user can use the recursive parameter
sweep tool, shown in Figure 3, to conduct statistically significant analysis. The recursive parameter tool runs the
simple parameter sweep multiple times in a loop until the user-specified number of samples has been successfully
solved or once the success rate for the recursive loop falls below 10%. All the features available with the simple
parameter sweep tool are also available with the recursive parameter sweep.

Lastly, as has been mentioned before, a user may be interested in getting output sensitivity to the various parameters
for stochastic value of innovation analyses. This is enabled by calling the differential parameter sweep function,
shown in Figure 4, where the tool loops over the nominally sampled values, but at each nominal iteration, conducts
another sweep on a parameter while holding other parameters at the nominal values for the iteration.

All three types of parameter sweep record the inputs, outputs, and whether the model was solved successfully or not
in a nested Python results dictionary at each iteration. The differential parameter sweep type also stores mapping
indices that links the nominal sweep values with their differential sweep values. Once the tool has swept over the
parameters, the users then have the option to write the results dictionary to an HS or a CSV file for post processing.

Outputs stored in the HS file are more detailed than in the CSV output file. The entire python results dictionary,

i.e., the input sweep parameters, model outputs, successful solve status, and for the differential sweep, the mapping
indices, gets stored in the HS file as groups and datasets. The input sweep parameters and output groups in the HS
file contain additional metadata corresponding to the Pyomo object. This includes the full name of the parameter,
units, upper and lower bounds, and the actual values from the sweep. The successful solve status is a boolean list that
states whether the flowsheet for a given parameter combination successfully solved or not. Mapping indices exist

in the case of differential parameter sweep, this is a set of two integer arrays that keeps track of the nominal indices
and their corresponding differential sweeps. The CSV output file, on the other hand, simply stores the input sweep
parameters and output values in a dataframe-like structure.

Nsamples < Niailed

Initialize
ParameterSweep
object for a
flowsheet

Sample sweep
parameters for While Ntajteq > 0

Nsamples

o Write H5 file End

Specify
requred

Nsamples

Count failed
samples, Nailed

While i < Nsamples

Yes

v

Solve
flowsheet
model

Collect
inputs,
outputs, and
solve status

Figure 3. Flow chart depicting the recursive parameter sweep algorithm that guarantees a specified number of samples.

2.3 Parallel Manager

The parameter sweep tool can leverage multiple CPU cores for solving multiple parameter combinations in parallel.
This is enabled through a parallel manager, which is an abstraction layer that allows the user to run their analysis
on different types of computing resources, e.g., laptops and desktops, high performance computers (HPC), and the
cloud. The parallel manager allows the user to run the parameter sweep in parallel using Message Passing Interface
(MP]) (Dalcin, Paz, and Storti 2005), Python multiprocessing, concurrent futures, and Ray (Moritz et al. 2018), in
addition to running in serial.

The user can specify which of these parallel backends and how many parallel processes they wish to use at run-time.
The choice of the parallel backend depends on whether the parameter sweep will be run on a shared memory or
distributed memory computer. Examples of shared memory systems include one’s personal laptop or desktop, or
one node on an HPC. All four parallel backends can be used on shared memory systems. Examples of a distributed
memory systems include clusters and HPCs where the system memory is distributed across multiple processors or
nodes. In the case of distributed memory systems only MPI and Ray Core can be used. Note that when using MPI,
users must use mpirun, mpiexec, or any related job scheduler command, e.g., srun, jsrun, etc. The parallel
manager and the parameter sweep tool is not designed to leverage hardware accelerators, e.g., GPUs.

Initialize
ParameterSweep
object for a
flowsheet

Specify
nominal

Start

Nsamples

Specify
differential

sweep details
(Nirr)

Sample sweep
parameters for

Nsamples

While i < Nsamples No—-| Write H5 file

Collect

Solve inputs,
flowsheet outputs, and
model solve status

Sample ngiit
sweep
parameters

Collect inputs,
outputs, and
solve status

Solve flow
sheet model

Figure 4. Flow chart depicting the parameter sweep algorithm that enables differential sampling at a nominal value.

3 Results

We demonstrate how the parameter sweep tool can be used to analyze an example flowsheet that models reverse
osmosis (RO) with energy recovery device and is distributed with WaterTAP examples. Section 3.1 gives a brief
description of the water treatment model, Sections 3.2 - 3.4 show the results of the different types of parameter
sweeps, and lastly, Section 3.5 discusses parallel scalability.

3.1 Water Treatment Model

We modeled a single RO stage with an energy recovery device (ERD) shown in Figure 5 to demonstrate the capabil-
ities of the parameter sweep tool. It includes a high pressure pump with a fixed outlet pressure connected to a steady
state RO process model. A turbine-type isothermal ERD model is connected downstream of the RO model. The feed
water is an NaCl brine solution and is modeled using NaCl property package within WaterTAP. Outputs that can be
measured from this flowsheet include LCOW, product flow rate and concentration, volumetric recovery, membrane
area, water recovery, and specific energy consumption (SEC).

3.2 Single-Variable Parameter Sweep

We begin by demonstrating how a single variable parameter sweep can be performed. Specifically, we look at the
variation in LCOW, SEC, and membrane area as a function of the membrane water permeability coefficient. We var-
ied the membrane water permeability between 0.36 — 3.6 LMH/bar using linear spacing and 100 sample points. The
results are plotted in Figure 6. LCOW and SEC in Figures 6a and 6b, respectively, exhibit similar trends where there
is a significant initial decrease in both metrics with an increase in water permeability, followed by a plateau where
past permeability of 2.5 LMH/bar reduction in LCOW and SEC is minimal. The membrane area, plotted in Fig-

ure 6c, also decreased as the water permeability increased; recall that since the outlet pressure of the high-pressure
pump and target recovery are fixed to 75 bar and 50%, respectively, the only free variable is the membrane area

that must decrease. However, as evidenced by the flattening of the curves in all three cases, there are diminishing
returns to further increase in water permeability. This is because of thermodynamic and mass transport limitations
(concentration polarization) (Okamoto and Lienhard 2019).

3.3 Multi-Variable Parameter Sweep

Next, we conducted two two-dimensional sweeps. We varied the membrane water permeability coefficient and

the membrane salt permeability coefficient in the first sweep. The second sweep studied the influence of water re-
covery and feed water salinity (NaCl concentration) on the LCOW for a given water and salt permeability. Both
variables used linear spacing to create the mesh grid for the two sweeps. Membrane water permeability varied be-
tween 0.36 — 3.6 LMH/bar, while membrane salt permeability varied between 0.036 — 0.288 LMH. Each parameter
is linearly sampled, containing 10 sample points each, and resulting in a 100-point mesh-grid. The results are plotted
in Figure 7a. We can see that LCOW shows very little sensitivity to salt permeability, especially when compared to

High pressure RO

um
Feed P N Product

N pr—-

Energy recovery
device

Waste

Figure 5. Diagram of RO with ERD flowsheet (Atia).

1.00

3.000
(V)A cr)’-\
£ £
& <
= 0501 i 2750
@]
Q 0
- %)
0.25 A 2.625 A
OOO T T T 2500 T T T
0 i 2 3 4 0 1 2 3 4
Water permeability (LMH/bar) Water permeability (LMH/bar)
(a) LCOW (b) Specific energy consumption (SEC)
200
e 150 A
@©
o
<
o 100 4
C
o
Q0
5
s 50 A
0 T T T
0 1 2 3 4

Water permeability (LMH/bar)

(c) Membrane area
Figure 6. Variation in LCOW, specific energy consumption, and membrane area as a function of membrane water permeability.

water permeability. The increase in salt permeability increases salt transport and salt concentration on the perme-
ate side of the membrane, reducing overall osmotic pressure difference and required operating pressure; however,
the overall impact on the studied system is small. The water permeability shows a similar trend as described in the
section above.

In the second sweep, water recovery is varied between 10% — 65% and feed water NaCl concentration is varied be-
tween 10 — 50 g/L. The impact of this variation on LCOW is shown in Figure 7b. We find that the LCOW decreases
with an increase in water recovery. LCOW vs. water permeability exhibits a similar trend to Figure 6a where LCOW
flattens with an increase in water recovery. This is due to overall costs being normalized by total produced water,
and at low recovery, the overall system cost is high, while the quantity of product water is low, resulting in higher
LCOW; as production increases, the cost decreases. At sufficiently high recoveries, the LCOW will increase due to
higher energy and capital cost requirements to achieve the high recovery; this was not observed in the current sweep
due to the range of explored water recoveries and limited maximum operating pressure of 65 bar, which prevented
treatment of high salinity feed at recoveries above 50

LCOW increases with feed water NaCl concentration, which is to be expected as the RO system has to do more work
in desalinating. Unlike the variation in LCOW with water recovery, the increase in LCOW with feed water salinity is

0.29

50.0
T -
2 C
c
2 e S 36.667
3 Y
3 ®
£ e
o 0.12
o 8 23333
5 3
zZ
0.04 10.0
0.36 1.44 2.52 36 10 28 47 65
Water permeability (LMH/bar) Water recovery (%)
(a) Membrane permeability (b) Feed water salinity

Figure 7. Two variable parameter sweep that shows variation in LCOW over the swept domain.

almost linear. Additionally, we see that LCOW is more sensitive to feed water salinity as compared to membrane salt
permeability. The white space on the top right corner of Figure 7b represents sweep iterations that failed to converge
to a solution because the osmotic pressure of the feed exceeded the maximum pressure allowed for the pump of 65
bar.

3.4 Differential Parameter Sweep

We ran the differential parameter sweep analysis to quantify and compare the value of innovation in various RO
components. Specifically, we assess changes in which of the following parameters, viz., membrane water permeabil-
ity, membrane cost, pressure exchanger efficiency, and pressure exchanger cost, will result in the greatest improve-
ments in LCOW. Uniform sampling was used to vary the nominal values of all 4 parameters. Membrane water per-
meability was drawn from a uniform distribution % (1.512,7.56) LMH/bar, membrane cost from % (10,30) $/m?,
pressure exchanger cost from % (250,535) $h/m3, and pressure exchanger efficiency from % (95,99)%. In the
differential sweep step, the membrane water permeability was improved by 5%, the membrane cost and pressure
exchanger costs were decreased by 5%, and the pressure exchanger efficiency was improved by 2%. The parameter
sweep had 1000 nominal samples with one differential sample per each nominal value, thereby resulting in 2000
total samples.

Figure 8 plots the results of this stochastic value of innovation analysis. The box plots shows 5, 25, 50", 75 and
95" percentile change in LCOW per percentile change in parameter performance. The results show that in a small
set of cases at (95" percentile) the membrane permeability would have highest increase in cost. This occurs only in
scenarios where the initial membrane permeability is low (~ 1 LMH/bar), whereas most contemporary commercial
membranes have higher water permeability. In almost all cases, decreasing membrane costs will reduce process costs
by about 0.06% on median per percentile change in membrane cost (~ 0.2$/m?). A large spread in box plot, as

in case of membrane water permeability, implies the cost improvement is largely dependent on the initial value. A
narrower box plot indicates a more consistent improvement in process LCOW. For example, improving the cost and
efficiency pressure exchanger always reduces cost regardless of their initial values.

3.5 Parallel Scalability

As was mentioned previously in Section 2.3, the parameter sweep tool is designed to be run in parallel on different
computing resources. We evaluated the scaling performance of the parameter sweep for different types of computing
systems that are representative of how the tool is being used currently. Specifically, we looked the scaling perfor-
mance on a 2021 16" Apple MacBook Pro and on NREL’s Eagle HPC.

The Apple MacBook Pro is used to demonstrate the performance of shared memory parallelism using Python’s
concurrent futures module. This laptop was equipped with the Apple M1 Max SoC that contains 10 physical cores (8

10

Membrane water permeability - |— I

Membrane cost ’-|:|:|—{

Pressure exchanger cost - }|,

Pressure exchanger efficiency - %

0.00 0.05 0.10 0.15 0.20
VOI (O/OALCOW/%Aperformance)

Figure 8. Box plot from a stochastic value of innovation analysis using the differential parameter sweep. The narrower the
box plot, the more consistent improvement in LCOW should be expected. The whiskers denote the best and worse cases.

high-performance, 2 efficiency), 32 GB of RAM, and a ITB SSD. We used the RO with ERD flowsheet described in
Section 3.1 to test the parallel performance by sweeping over membrane water permeability, feed water salinity, and
the energy recovery pressure exchanger costs. Random sampling was used to generate 2500 total samples. Samples
for the membrane water permeability were drawn from a uniform distribution % (0.36,3.6) LMH/bar. Feed water
salinity was also assumed to have a uniform distribution % (10,50) g/L, and the energy recovery pressure exchanger
cost was assumed to have a normal distribution .#"(535,60%) $h/m?. We conducted a strong scaling study using

the simple parameter sweep described in Figure 2 and recorded the total solve time as a function of the number of
processes used.

Figure 9 plots the results of the strong scaling study where 9a and 9b plot the total time elapsed and the computa-
tional speed up as a function of number of processes, respectively. We see that the scaling performance is almost
linear for the first six cores before tapering off. Since there are parts of the code that are inherently serial, e.g.,
sample generation, result aggregation, file I/O, we should expect the slope of the speed up curve to be less than

1. The decrease in scalability at higher core counts should be expected because on a personal computer; multiple
background processes are expected to run and interfere with the python processes resulting in some slowdowns. In
addition, the difference between the high-performance and efficiency cores on the M1 Max can also affect the scaling
performance.

Next we submit jobs on NREL’s Eagle HPC. Eagle is used to demonstrate the performance of distributed memory
parallelism using MPI. Each compute node on Eagle is equipped with dual 3.0 GHz Intel Xeon Gold Skylake 6154
processors with a total of 36 physical processor cores and 96 GB of RAM. An InfiniBand network with 100 Gb/s
bandwidth is used to connect the compute nodes and storage with each other. Eagle uses a Lustre files system for
high-performance parallel I/O (National Renewable Energy Laboratory).

We use the RO with energy recovery devices flowsheet and a low-salt-rejection reverse osmosis (LSRRO) flowsheet
described in (Atia et al. 2023) for this scalability analysis. The parameters in the sweep for RO with ERD were the
same as before. However, we increased the total number of samples to 100,000. The LSRRO flowsheet contains

a 2-stage model and two parameters are swept across. Fixed linear sampling was used to vary the feed concentra-
tion between 5 — 250 kg/m> and volumetric recovery rate between 30 — 90%. 100 samples were drawn for each
parameter, resulting in a 100 x 100 meshgrid, i.e., 10,000 total samples.

The strong scaling study on Eagle was conducted using up to 8 compute nodes or 288 processor cores. The results
of these scaling studies are shown in Figure 10. As we can see the parameter sweep exhibits linear scaling. For the
RO with ERD flowsheet, we observed a speed up of 4.5x when going from one compute node (36 cores) to five (180
cores). LSRRO exhibits a speed up of 2.4x when scaling up from 3 (108 cores) nodes to 8 (288 cores).

11

Wall time (s)

500 107
200 - 51
=
>
100 - °
1 (]
&
50 A 27
20 : : 1 ; : .
1 2 5 10 1 2 5 10
Cores (#) Cores (#)

(a) Total Solve Time (b) Computational Speed-up

Figure 9. Strong scaling results when using concurrent futures for run-
ning parameter sweep with on the RO with ERD flowsheet with 2500 samples.

100
50 A
=
E 20-
(0]
£
= 107
(U 4
= :
5 -
| === RO with ERD - 100,000 samples
== LSRRO - 10,000 samples
2 S J T BRI | T T T
20 50 100 200 500

Cores (#)

Figure 10. Strong scaling results when using MPI for running parameter sweep on NREL's Eagle HPC.
Two flowsheets, RO with ERD and LSRRO, are considered for this analysis. Both exhibit linear scaling.

12

4 Conclusions

We present a powerful parameter sweep tool for water treatment analysis in this paper. This tool resides within Wa-
terTAP and leverages the most advanced features of IDAES and Pyomo to conduct efficient and scalable numerical
experiments of current and emerging technologies. Specifically, a user may use the parameter sweep tool for feasible
configuration analyses, efficiency analyses, techno-economic analyses, sensitivity analyses, and even stochastic value
of innovation analyses. Although, all examples shown here used WaterTAP models, the parameter sweep tool will
also work with most IDAES and Pyomo models.

The parameter sweep is designed to be modular and three different types of parameter sweep have been imple-
mented, viz., simple parameter sweep, recursive parameter sweep, and differential parameter sweep, as described in
Figures 2, 3, and 4, respectively. Users can select one suitable for their specific analysis or combine them as needed
in an outer-loop analysis. For analyses involving a design space exploration, a user may start by selecting the simple
parameter sweep tool. If the user needs to generate a specific number of stochastic samples where some will fail, the
user may use the recursive parameter sweep tool that attempts to successfully solve the desired number of samples.
Lastly, if a user wishes to study the sensitivity of a parameter, they can use the differential parameter sweep tool. All
parameter sweep types have several configuration options that enable the user to tailor the sweep run to their needs.

The parameter sweep tool is designed to be portable and leverage parallel processing. The parallel manager de-
scribed in Section 2.3 enables the parameter sweep to leverage different parallel backends depending on their com-
puting hardware. Section 3.5 shows that the parameter sweep tool scales well with simple and complex problems on
both a personal computer and on an HPC. Such scalability opens the door to previously computationally intractable
analyses.

The WaterTAP parameter sweep tool has already been used in scientific literature (Atia et al. 2023; Amusat et

al. 2024) and its use is expected to continue. Some of the proposed future work includes continued support for
existing and future WaterTAP analyses, integration with the IDAES diagnostic toolbox to help debug IDAES and
Pyomo models, better sampling strategies, dynamic load balancing for more robust parallel performance, additional
configuration options for sweeps, and tighter coupling with the WaterTAP GUI. The parameter sweep tool is under
active development will continue to improve and better suit the needs of users and researchers. Users can access the
parameter sweep tool at https://github.com/watertap-org/parameter-sweep/tree/main (watertap-org 2024).

13

https://github.com/watertap-org/parameter-sweep/tree/main

References

Amusat, O. O., A. A. Atia, A. V. Dudchenko, and T. V. Bartholomew. 2024. “Modeling Framework for Cost Opti-
mization of Process-Scale Desalination Systems with Mineral Scaling and Precipitation.” ACS ES&T Engineering,
https://doi.org/10.1021/acsestengg.3c00537.

Atia, A. WaterTAP Introduction Tutorial. https://github.com/watertap - org/watertap/blob/0.6.0rc0/tutorials/
introduction.ipynb. Accessed: Apr 29, 2024.

Atia, A. A, J. Allen, E. Young, B. Knueven, and T. V. Bartholomew. 2023. “Cost optimization of low-salt-rejection
reverse osmosis.” Desalination 551:116407. ISSN: 0011-9164. https://doi.org/10.1016/j.desal.2023.116407.
https://www.sciencedirect.com/science/article/pii/S0011916423000395.

Atia, A. A, N. Y. Yip, and V. Fthenakis. 2021. “Pathways for minimal and zero liquid discharge with enhanced
reverse osmosis technologies: Module-scale modeling and techno-economic assessment.” Desalination 509:115069.
ISSN: 0011-9164. https://doi.org/10.1016/j.desal.2021.115069. https://www.sciencedirect.com/science/article/pii/
S0011916421001405.

Bartholomew, T. 2022. NAWI Alliance Virtual Fall Meeting - NAWI Tools Deep Dive: WaterTAP. https:// www .
youtube.com/watch?v=Gi3tkzb51z4. Accessed: May 25, 2023.

Bartholomew, T. V., A. V. Dudchenko, N. S. Siefert, and M. S. Mauter. 2020. “Cost optimization of high recovery
single stage gap membrane distillation.” Journal of Membrane Science 611:118370. 1SSN: 0376-7388. https://doi.
org/10.1016/j.memsci.2020.118370. https://www.sciencedirect.com/science/article/pii/S0376738820309480.

Bartholomew, T. V., L. Mey, J. T. Arena, N. S. Siefert, and M. S. Mauter. 2017. “Osmotically assisted reverse os-
mosis for high salinity brine treatment.” The Latest Advances and Opportunities in Forward Osmosis, Desalination
421:3-11. 1SSN: 0011-9164. https://doi.org/10.1016/j.desal.2017.04.012. https://www.sciencedirect.com/science/
article/pii/S0011916416319579.

Bartholomew, T. V., N. S. Siefert, and M. S. Mauter. 2018. “Cost Optimization of Osmotically Assisted Reverse
Osmosis.” Environmental Science & Technology 52 (20): 11813—11821. https://doi.org/10.1021/acs.est.8b02771.

Beattie, K. S., D. Gunter, B. Knueven, A. Lee, A. Ladshaw, M. Drouven, T. Bartholomew, et al. 2021. WaterTAP
v1.0.0, May. https://doi.org/10.11578/dc.20210527.7. https://www.osti.gov/biblio/1785311.

Bynum, M. L., G. A. Hackebeil, W. E. Hart, C. D. Laird, B. L. Nicholson, J. D. Siirola, J.-P. Watson, and D. L.
Woodruff. 2021. Pyomo—optimization modeling in python. Third. Vol. 67. Springer Science & Business Media.

Cacuci, D. 2003. Sensitivity & Uncertainty Analysis, Volume 1: Theory. v. 1. CRC Press. ISBN: 9780203498798.

Chen, X., and N. Y. Yip. 2018. “Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Re-
verse Osmosis: Energy and Operating Pressure Analysis.” Environmental Science & Technology 52 (4): 2242-2250.
https://doi.org/10.1021/acs.est.7b05774.

Dalcin, L., R. Paz, and M. Storti. 2005. “MPI for Python.” Journal of Parallel and Distributed Computing 65 (9):
1108-1115. 1SSN: 0743-7315. https://doi.org/10.1016/j.jpdc.2005.03.010. https://www.sciencedirect.com/science/
article/pii/S0743731505000560.

Davenport, D. M. 2020. “Thin film composite membrane compaction in high-pressure reverse osmosis” [in English].
Journal of membrane science v. 610:pp. 118268-2020 v.610. https://doi.org/10.1016/j.memsci.2020.118268.

Davenport, D. M., A. Deshmukh, J. R. Werber, and M. Elimelech. 2018. “High-Pressure Reverse Osmosis for
Energy-Efficient Hypersaline Brine Desalination: Current Status, Design Considerations, and Research Needs.”
Environmental Science & Technology Letters 5 (8): 467-475. https://doi.org/10.1021/acs.estlett.8b00274.

Dudchenko, A. V., T. V. Bartholomew, and M. S. Mauter. 2021. “High-impact innovations for high-salinity mem-
brane desalination.” Proceedings of the National Academy of Sciences 118 (37): €2022196118. https://doi.org/doi:
10.1073/pnas.2022196118.

14

https://doi.org/10.1021/acsestengg.3c00537
https://github.com/watertap-org/watertap/blob/0.6.0rc0/tutorials/introduction.ipynb
https://github.com/watertap-org/watertap/blob/0.6.0rc0/tutorials/introduction.ipynb
https://doi.org/10.1016/j.desal.2023.116407
https://www.sciencedirect.com/science/article/pii/S0011916423000395
https://doi.org/10.1016/j.desal.2021.115069
https://www.sciencedirect.com/science/article/pii/S0011916421001405
https://www.sciencedirect.com/science/article/pii/S0011916421001405
https://www.youtube.com/watch?v=Gi3fkzb51z4
https://www.youtube.com/watch?v=Gi3fkzb51z4
https://doi.org/10.1016/j.memsci.2020.118370
https://doi.org/10.1016/j.memsci.2020.118370
https://www.sciencedirect.com/science/article/pii/S0376738820309480
https://doi.org/10.1016/j.desal.2017.04.012
https://www.sciencedirect.com/science/article/pii/S0011916416319579
https://www.sciencedirect.com/science/article/pii/S0011916416319579
https://doi.org/10.1021/acs.est.8b02771
https://doi.org/10.11578/dc.20210527.7
https://www.osti.gov/biblio/1785311
https://doi.org/10.1021/acs.est.7b05774
https://doi.org/10.1016/j.jpdc.2005.03.010
https://www.sciencedirect.com/science/article/pii/S0743731505000560
https://www.sciencedirect.com/science/article/pii/S0743731505000560
https://doi.org/10.1016/j.memsci.2020.118268
https://doi.org/10.1021/acs.estlett.8b00274
https://doi.org/doi:10.1073/pnas.2022196118
https://doi.org/doi:10.1073/pnas.2022196118

Harris, C. R., K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, et al. 2020.
“Array programming with NumPy.” Nature 585, no. 7825 (September): 357-362. https://doi.org/10.1038/s41586-
020-2649-2.

Hart, W. E., J.-P. Watson, and D. L. Woodruff. 2011. “Pyomo: modeling and solving mathematical programs in
Python.” Mathematical Programming Computation 3, no. 3 (September): 219-260. ISSN: 1867-2957. https://doi.org/
10.1007/s12532-011-0026-8.

HSL(2013). A collection of Fortran codes for large scale scientific computation. https://www.hsl.rl.ac.uk/. Accessed:
May 26, 2023.

Ino, F, K. Shigeoka, T. Okuyama, M. Motokubota, and K. Hagihara. 2014. “A parallel scheme for accelerating
parameter sweep applications on a GPU” [in eng]. Concurrency and computation 26 (2): 516-531. 1SSN: 1532-0626.

Lee, A., J. H. Ghouse, Q. Chen, J. C. Eslick, J. D. Siirola, I. E. Grossman, and D. C. Miller. 2018. “A Flexible
Framework and Model Library for Process Simulation, Optimization and Control.” In 13th International Symposium
on Process Systems Engineering (PSE 2018), edited by M. R. Eden, M. G. Ierapetritou, and G. P. Towler, 44:937—
942. Computer Aided Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-444-64241-7.50151-8.
https://www.sciencedirect.com/science/article/pii/B9780444642417501518.

Lee, A., J. H. Ghouse, J. C. Eslick, C. D. Laird, J. D. Siirola, M. A. Zamarripa, D. Gunter, et al. 2021. “The IDAES
process modeling framework and model library—Flexibility for process simulation and optimization.” Journal of
Advanced Manufacturing and Processing 3 (3): e10095. https://doi.org/10.1002/amp2.10095. https://aiche.
onlinelibrary.wiley.com/doi/abs/10.1002/amp2.10095.

Moritz, P., R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, et al. 2018. Ray: A Distributed Frame-
work for Emerging Al Applications. arXiv: 1712.05889 [cs.DC].

National Renewable Energy Laboratory. Eagle Computing System. https://www .nrel.gov/hpc/eagle-system.html.
Accessed: Jul 12, 2023.

Nocedal, J., and S. J. Wright. 2006. Numerical optimization. 2nd ed. New York: Springer. ISBN: 978-0-387-30303-1.

Okamoto, Y., and J. H. Lienhard. 2019. “How RO membrane permeability and other performance factors affect
process cost and energy use: A review.” Desalination 470:114064. 1SSN: 0011-9164. https://doi.org/10.1016/j.desal.
2019.07.004. https://www.sciencedirect.com/science/article/pii/S0011916419305752.

Onishi, V. C., A. Carrero-Parrefio, J. A. Reyes-Labarta, E. S. Fraga, and J. A. Caballero. 2017. “Desalination of
shale gas produced water: A rigorous design approach for zero-liquid discharge evaporation systems.” Journal of
Cleaner Production 140:1399—-1414. 1SSN: 0959-6526. https://doi.org/10.1016/j.jclepro.2016.10.012. https:
/lwww.sciencedirect.com/science/article/pii/S0959652616316109.

Pacini, E., C. Mateos, and C. Garino. 2013. “Schedulers Based on Ant Colony Optimization for Parameter Sweep
Experiments in Distributed Environments.” In Handbook of Research on Computational Intelligence for Engineer-
ing, Science, and Business, 410-448. USA. 1SBN: 9781466625181.

Patel, S. K., B. Lee, P. Westerhoff, and M. Elimelech. 2024. “The potential of electrodialysis as a cost-effective
alternative to reverse osmosis for brackish water desalination.” Water Research 250:121009. 1SSN: 0043-1354. https:
//doi.org/10.1016/j.watres.2023.121009. https://www.sciencedirect.com/science/article/pii/S0043135423014495.

Razavi, S., and H. V. Gupta. 2015. “What do we mean by sensitivity analysis? The need for comprehensive charac-
terization of “global” sensitivity in Earth and Environmental systems models.” Water Resources Research 51 (5):
3070-3092. https://doi.org/10.1002/2014WR016527. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/
2014WRO016527.

Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola. 2007. Global
Sensitivity Analysis. The Primer. England: John Wiley & Sons, Ltd. ISBN: 9780470725184. https://doi.org/10.1002/
9780470725184. https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470725184.

15

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/s12532-011-0026-8
https://doi.org/10.1007/s12532-011-0026-8
https://www.hsl.rl.ac.uk/
https://doi.org/10.1016/B978-0-444-64241-7.50151-8
https://www.sciencedirect.com/science/article/pii/B9780444642417501518
https://doi.org/10.1002/amp2.10095
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/amp2.10095
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/amp2.10095
https://arxiv.org/abs/1712.05889
https://www.nrel.gov/hpc/eagle-system.html
https://doi.org/10.1016/j.desal.2019.07.004
https://doi.org/10.1016/j.desal.2019.07.004
https://www.sciencedirect.com/science/article/pii/S0011916419305752
https://doi.org/10.1016/j.jclepro.2016.10.012
https://www.sciencedirect.com/science/article/pii/S0959652616316109
https://www.sciencedirect.com/science/article/pii/S0959652616316109
https://doi.org/10.1016/j.watres.2023.121009
https://doi.org/10.1016/j.watres.2023.121009
https://www.sciencedirect.com/science/article/pii/S0043135423014495
https://doi.org/10.1002/2014WR016527
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014WR016527
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014WR016527
https://doi.org/10.1002/9780470725184
https://doi.org/10.1002/9780470725184
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470725184

Smith, R. C. 2013. Uncertainty Quantification: Theory, Implementation, and Applications. USA: Society for Indus-
trial / Applied Mathematics. ISBN: 161197321X.

Sobol, 1. 2001. “Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates.” The
Second IMACS Seminar on Monte Carlo Methods, Mathematics and Computers in Simulation 55 (1): 271-280.
ISSN: 0378-4754. https://doi.org/10.1016/S0378-4754(00)00270-6. https://www.sciencedirect.com/science/article/
pii/S0378475400002706.

The IDAES Process Systems Engineering Framework. https://github.com/IDAES/idaes-pse. Accessed May 18, 2023.

Van Rossum, G., and F. L. Drake. 2009. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace. ISBN:
1441412697.

Waichter, A., and L. T. Biegler. 2006. “On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming.” From https://doi.org/10.1007/s10107-004-0559-y, Mathematical Programming
106, no. 1 (March): 25-57. 1SSN: 1436-4646. https://doi.org/10.1007/s10107-004-0559-y.

WaterTAP development repository. https://github.com/watertap-org/watertap. Accessed May 18, 2023.

watertap-org. 2024. parameter-sweep. Accessed June 3, 2024. https :// github . com/ watertap - org / parameter -
sweep/tree/main.

Youn, C., and T. Kaiser. 2010. “Management of a parameter sweep for scientific applications on cluster environ-
ments.” Concurrency and Computation: Practice and Experience 22 (18): 2381-2400. https://doi.org/10.1002/cpe.
1563. https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1563.

16

https://doi.org/10.1016/S0378-4754(00)00270-6
https://www.sciencedirect.com/science/article/pii/S0378475400002706
https://www.sciencedirect.com/science/article/pii/S0378475400002706
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://github.com/watertap-org/parameter-sweep/tree/main
https://github.com/watertap-org/parameter-sweep/tree/main
https://doi.org/10.1002/cpe.1563
https://doi.org/10.1002/cpe.1563
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1563

Appendix A. Parameter Sweep Options

Table A.1 describes all the arguments and the keyword arguments that can be supplied to the 3 parameter sweep
classes, viz., ParameterSweep, RecursiveParameterSweep, and DifferentialParameterSweep,
described in Section 2.2.2. These keyword arguments are stored in the parameter sweep classes using Pyomo’s con-
figuration system. All three classes are derived from the private base class _ParameterSweepBase. This enables
a consistent API with most of the keyword arguments are shared across the three classes. Differential parameter
sweep expects a few additional options due to its added complexity.

All three parameter sweep classes contain a parameter_sweep method that actually executes the parameter
sweep. The arguments and the keyword arguments for this method is consistent across three methods and are de-

tailed in Table A.2.

Table A.1. Parameter Sweep inputs that leverage Pyomo’s configuration system

Inputs

Description

build_model
build_model_kwargs
build_sweep_params
build_sweep_params_kwargs
build_outputs
build_outputs_kwargs
index_global_combo_array

initialize_before_sweep
initialize_function
initialize_kwargs
log_model_states
number_of_subprocesses

optimize_function
optimize_kwargs
parallel_back_end
probe_function
reinitialize_function
reinitialize_kwargs
reinitialize_before_sweep
update_sweep_params_before_-—
init

Function for building the model

Keyword argument for the model build function

Function for building the sweep parameters

Keyword argument for the build sweep params function
Function for building outputs

Keyword argument for the build outputs function

Will add indexing to global_combo_array created while running
the sweep, primarily used with differential parameter sweep tool
Initializing a model before every iteration

Function to initialize a flowsheet

Keyword arguments for the initialization function

Enables logging of model states during serial execution

Number of processes to fan out to locally - ignored if running under
MPI

Optimization function to be used in the parameter sweep
Keyword argument for the optimization function

Backend for parallelization

Function to probe if a flowsheet configuration will work
Function to reinitialize a flowsheet

Keyword arguments for the reinitialization function
Reinitializing a model before every iteration

Enables update of vars to sweep values before initialization (only
enabled if init_before_sweep=True)

GUI

publish_progress

publish_address

Boolean to decide whether information about how many iterations of
the parameter sweep have completed should be sent
Address to which the parameter sweep progress will be sent

For advanced users only

custom_do_param_sweep

custom_do_param_sweep_kwargs

Alternative implementation of the parameter sweep function in case
the user is doing unique analyses or wishes to implement a different
parallel implementation

Keyword arguments associated with the alternative parameter sweep
function

Specific to DifferentialParameterSweep

build_differential_sweep_-—
specs
build_differential_sweep_-—
specs_kwargs
differential_sweep_specs

guarantee_solves
num_diff_ samples

Function for building the differential sweep specification dictionary
Keyword argument for the building differential sweep function

Python dictionary containing the specifications for the differential
sweep.

Guarantee if a certain number of solves is expected

Number of samples for differential sweep

17

Table A.2. Arguments to the parameter_sweep method.

Arguments

Description

build_model
build_sweep_params

Function for building the model
Function for building the sweep parameters

Keyword Arguments

Description

build_model_kwargs
build_sweep_params_—
kwargs

build_outputs
build_outputs_kwargs
seed

num_samples

Keyword argument for the model build function
Keyword argument for the build sweep params function

Function for building outputs

Keyword argument for the build outputs function
Seed for the random sampling

Number of samples for the random sampling type

Finally, the process of writing the results to file is handled by another class called ParameterSweepWriter.
ParameterSweepWriter also uses Pyomo’s configuration system to store user specified keyword arguments.
All parameter sweep classes instantiate a ParameterSweepWriter object and the keyword arguments for the
writer are specified when creating a parameter sweep object. The ParameterSweepWriter are specified in

Table A.3 below.

Table A.3. Configuration options for ParameterSweepWriter class

Inputs

Description

debugging_data_dir
csv_results_file name
h5_results_file_name
interpolate_nan_outputs
h5_parent_group_name

Directory path to output debugging data

File path to the output CSV file

File path to the output H5 file

Bool to decide whether to interpolate NaN outputs

Parent group name (container like objects, similar to a folder/directory
in a file system) for parameter sweep outputs to be saved

18

Appendix B. Generative Al Prompts and Responses

This appendix contains the user prompts and the corresponding ChatGPT outputs that were used to assist in the
preparation of this technical report. The user prompts are italicized and the ChatGPT responses are provided as

verbatim.

Give me seminal references for sensitivity analysis

Sure! Here are some seminal references on sensitivity analysis:

1.

2.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., ... & Tarantola, S. (2008).
Global sensitivity analysis: The primer. John Wiley & Sons.

Morris, M. D. (1991). Factorial sampling plans for preliminary computational experiments. Techno-
metrics, 33(2), 161-174.

. Sobol’, I. M. (1993). Sensitivity estimates for nonlinear mathematical models. Mathematical Modeling

and Computational Experiment, 1(4), 407-414.

. Saltelli, A., Tarantola, S., & Chan, K. P. (1999). A quantitative model-independent method for global

sensitivity analysis of model output. Technometrics, 41(1), 39-56.

. Campolongo, F., Cariboni, J., & Saltelli, A. (2007). An effective screening design for sensitivity

analysis of large models. Environmental Modelling & Software, 22(10), 1509-1518.

. Tooss, B., & Prieur, C. (2019). Shapley effects for sensitivity analysis with dependent inputs: compar-

isons with Sobol’ indices, numerical estimation and applications. Journal of Statistical Computation
and Simulation, 89(7), 1300-1334.

. Borgonovo, E. (2007). A new uncertainty importance measure. Reliability Engineering & System

Safety, 92(6), 771-784.

. Plischke, E., Eichfelder, G., & Boxberger, S. (2013). Derivative-free global optimization based on

radial basis function interpolation and sensitivity analysis. Journal of Global Optimization, 55(4),
843-867.

These references cover various aspects of sensitivity analysis, including global sensitivity analysis, screening
designs, importance measures, uncertainty analysis, and derivative-free optimization. They should provide a
solid foundation for understanding and conducting sensitivity analysis.

Give me seminal papers of parameter sweep

Here are some seminal papers related to parameter sweep:

1.

2.

Forrest, S., Perelson, A. S., Allen, L., & Cherukuri, R. (1994). Self-nonself discrimination in a com-
puter. In Advances in Neural Information Processing Systems (pp. 396-403).

Carbone, A., Forest, M. G., Gokhale, M. B., & Grama, A. Y. (2005). Adjoint sensitivity analysis for
high performance computing: BlueGene/L case study. In SC’05: Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing (pp. 43-43).

. Helbing, D., & Molndr, P. (1995). Social force model for pedestrian dynamics. Physical review E,

51(5), 4282.

. Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature,

424(6950), 824-830.

. De Fabritiis, G., & Coveney, P. V. (2003). Coupling fluctuating hydrodynamics to molecular dynamics:

Finite-size effects and synchronization. Physical Review E, 68(3), 036704.

. Perelson, A. S., & Nelson, P. W. (1999). Mathematical analysis of HIV-1 dynamics in vivo. STAM

Review, 41(1), 3-44.

. Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of

coupled chemical reactions. Journal of Computational Physics, 22(4), 403-434.

. Clayton, R. W. (1982). An analysis of the accuracy of finite-difference schemes for hyperbolic IBVPs

with different boundary conditions. Journal of Computational Physics, 46(1), 63-78.

These papers cover a variety of fields, including computer science, physics, biology, and computational
chemistry. While not all of them explicitly focus on parameter sweep methods, they represent seminal works
that utilize different simulation and computational techniques, some of which may involve parameter sweeps
as part of their analysis or experimentation.

Write an introduction on the importance of parameter sweep for sensitivity analysis

19

Introduction:

Parameter sweep is a powerful technique used in sensitivity analysis to investigate the behavior of a system or
model across a range of input parameter values. It involves systematically varying the values of one or more
input parameters and observing the corresponding changes in the output or response of the system. Parameter
sweep analysis provides valuable insights into how changes in parameter values impact the overall behavior,
performance, and robustness of a system or model.

Sensitivity analysis plays a crucial role in numerous scientific and engineering fields, including environmental
modeling, climate science, economics, optimization, and computational biology, among others. It aims to
understand and quantify the influence of input parameters on the model’s outputs, enabling researchers and
decision-makers to identify the most influential parameters and better understand the system’s dynamics.

The importance of parameter sweep for sensitivity analysis lies in its ability to reveal the relationships and
dependencies between input parameters and model outputs. By systematically varying parameter values
over a defined range, researchers can observe the resulting changes in the model’s behavior and assess how
sensitive the model is to different input conditions. This information is vital for a range of purposes, such
as identifying critical parameters, assessing model reliability, optimizing system performance, and making
informed decisions.

Parameter sweep analysis allows researchers to explore the input parameter space comprehensively. Instead
of relying on single-point estimates or limited scenarios, parameter sweep provides a more comprehensive
understanding of the system’s response to different parameter combinations. It helps in identifying non-
linear relationships, threshold effects, and interactions between parameters that might not be apparent when
considering individual parameters in isolation.

Furthermore, parameter sweep analysis facilitates the identification of influential parameters by quantifying
their impact on the model output. Various sensitivity measures can be employed to assess the sensitivity of
model outputs to changes in parameter values, such as global sensitivity indices, local sensitivity analyses,
and regression-based approaches. These measures provide valuable information on the relative importance of
different parameters, enabling researchers to prioritize their efforts and resources in further investigations and
model refinements.

Additionally, parameter sweep analysis supports model validation and uncertainty quantification. By explor-
ing the parameter space and comparing the model outputs to experimental or observed data, researchers can
assess the model’s capability to reproduce known phenomena. Sensitivity analysis using parameter sweep
techniques can also help in characterizing the uncertainty associated with model predictions by quantifying
the range of possible outcomes due to parameter variations.

In conclusion, parameter sweep analysis is a crucial tool in sensitivity analysis, enabling researchers to ex-
plore the relationships between input parameters and model outputs. It provides a comprehensive under-
standing of system behavior, helps identify influential parameters, supports model validation, and contributes
to uncertainty quantification. By employing parameter sweep techniques, researchers can gain valuable in-
sights into complex systems and make informed decisions based on a thorough understanding of parameter
sensitivities.

What is sensitivity analysis

Sensitivity analysis is a systematic technique used to assess the sensitivity or responsiveness of a system or
model to changes in input parameters or assumptions. It aims to understand how variations in input values
impact the outputs or outcomes of a model, simulation, or decision-making process.

The primary goal of sensitivity analysis is to quantify and rank the influence of individual parameters or
groups of parameters on the model’s outputs or performance. It helps identify which parameters have the
most significant impact on the results, which are relatively insensitive, and which might interact with each
other. Sensitivity analysis provides valuable insights into the relationships and dependencies between input
parameters and model outputs, aiding in decision-making, model improvement, and uncertainty management.

20

Sensitivity analysis can be performed using various approaches, including local and global methods. Local
sensitivity analysis focuses on understanding the impact of small perturbations or variations in individual
parameters on the model output. It often involves calculating sensitivity indices, such as partial derivatives or
elasticity coefficients, to quantify the change in the output resulting from a unit change in a specific parame-
ter.

Global sensitivity analysis, on the other hand, aims to assess the combined or interactive effects of multiple
parameters across a wide range of their possible values. It involves exploring the entire parameter space and
analyzing the model’s response to different parameter combinations. Global sensitivity analysis methods,
such as variance-based methods (e.g., Sobol’ indices) or regression-based methods (e.g., Morris method),
provide insights into the relative importance of different parameters and their interactions.

Sensitivity analysis is valuable in several domains, including engineering, environmental modeling, finance,
health sciences, and policy analysis. It helps in decision-making processes by identifying critical parameters
and understanding the robustness of models or systems. It aids in model calibration and validation, as sen-
sitivity analysis can reveal the most influential parameters to focus on during the model refinement process.
Sensitivity analysis is also essential for uncertainty quantification, as it helps characterize the variability and
uncertainty associated with model predictions.

In summary, sensitivity analysis is a fundamental tool for understanding and quantifying the impact of input
parameter variations on model outputs. By systematically exploring the parameter space and assessing the
sensitivity of the model, sensitivity analysis provides valuable insights for decision-making, model improve-
ment, and uncertainty management.

What is parameter sweep

Parameter sweep, also known as parameter exploration or parameter scanning, is a technique used in com-
putational modeling and simulation to systematically explore the behavior of a system or model by varying
the values of input parameters over a specified range. It involves running the model multiple times, each time
with different combinations of parameter values, and observing the corresponding outputs or results.

The purpose of parameter sweep is to understand how changes in input parameter values affect the behavior,
performance, or outcomes of the model. By sweeping through a range of parameter values, researchers can
analyze the sensitivity of the model to different parameter settings and explore the relationships between input
parameters and model outputs. Parameter sweep allows for a comprehensive investigation of the system’s
response to various input conditions and helps identify important parameter values, optimal configurations, or
critical regions in the parameter space.

Parameter sweep can be conducted in a structured or unstructured manner, depending on the goals and char-
acteristics of the model. Structured parameter sweeps involve systematically varying parameters within pre-
defined ranges or grids, ensuring a comprehensive exploration of the parameter space. Grid-based sampling
methods, such as Latin hypercube sampling or full-factorial designs, are often used for structured parameter
sweeps.

In contrast, unstructured parameter sweeps involve randomly or intelligently sampling the parameter space.
Random sampling techniques, such as Monte Carlo simulations, randomly select parameter values from
within specified ranges. Intelligent sampling methods, such as adaptive sampling or Latin hypercube sam-
pling with optimization algorithms, aim to prioritize sampling regions of the parameter space that are likely to
yield interesting or informative results.

The choice of parameter values and ranges in a parameter sweep is crucial and should be based on prior
knowledge, expert judgment, available data, or sensitivity analysis results. It is important to consider both the
plausible ranges of parameter values and their potential impact on the model’s behavior or outputs.

Parameter sweep is a valuable technique in computational modeling and simulation, allowing researchers

to gain insights into the sensitivity, robustness, and behavior of complex systems. It helps in understanding
the impact of parameter variations, identifying influential parameters, optimizing system performance, and
exploring the range of possible outcomes. By systematically exploring the parameter space, parameter sweep
aids in improving model understanding, decision-making, and model validation processes.

Create a flow chart for a parameter sweep tool

21

Certainly! Here’s a basic flow chart for a parameter sweep tool:

——_—— +
Start Parameter Sweep |
e +
|
v
o +
| Set Parameters |
o +
|
v
Fm +
| Run Simulation |
o ——— +
|
v
o +
| Check Simulation Results |
——_—— +
|
v
Fom +
| Store Results |
+——_——— +
|
v
e it +
| Next Iteration |
o +
|
v
e +
| Check Termination |
t—_— +
|
v
o +
| End Parameter |
| Sweep |
o +
|
v
e +
| Finish
t+———— +

Explanation of the flow chart:
1. Start Parameter Sweep: The process begins here.
2. Set Parameters: Set the initial parameters for the simulation.

3. Run Simulation: Execute the simulation with the current parameter values.

22

4. Check Simulation Results: Analyze the results obtained from the simulation.
5. Store Results: Store or record the simulation results for further analysis or visualization.
6. Next Iteration: Move on to the next iteration or set of parameters.

7. Check Termination: Determine if the parameter sweep should continue based on predefined termina-
tion conditions (e.g., maximum number of iterations reached).

8. End Parameter Sweep: If the termination conditions are met, end the parameter sweep.
9. Finish: The process is complete.

This flow chart represents a basic outline of a parameter sweep tool. The specifics of each step may vary
depending on the context and requirements of your particular tool or application.

Write a paragraph on how a python parameter sweep software has been developed to simplify its use by professors,
scientists, and graduate students while offering robustness in its analysis

A Python parameter sweep software has been meticulously developed to provide a user-friendly experi-

ence for professors, scientists, and graduate students, simplifying the complex task of conducting parameter
sweeps. The software offers an intuitive interface that allows users to easily set up and configure their desired
parameters, eliminating the need for extensive coding knowledge. By abstracting the technical complexi-
ties, the software enables users to focus on their scientific objectives and analysis. Despite its user-friendly
nature, the software ensures robustness in analysis by incorporating efficient algorithms and error handling
mechanisms. It facilitates the execution of simulations or experiments with various parameter combinations,
enabling users to explore a wide range of scenarios effortlessly. The software also provides comprehensive re-
sult analysis tools, allowing users to visualize and interpret the outcomes of their parameter sweeps. With its
combination of user-friendly features and robust analysis capabilities, this Python parameter sweep software
empowers researchers to efficiently and effectively explore and analyze complex systems.

Write the conclusion section for a parameter sweep technical report

The conclusion of a parameter sweep technical report should encapsulate the essential findings obtained
from systematically varying the parameters in your study. Here’s an example of how you might structure the
conclusion section:

Conclusion:

In conclusion, the comprehensive parameter sweep conducted in this study has provided valuable insights into
the behavior and performance of our system under varying conditions. The key findings can be summarized
as follows:

1. Optimal Parameter Configurations: Through the systematic exploration of a range of parameter
values, we have identified specific configurations that result in optimal system performance. These
configurations, elucidated through careful analysis, can serve as valuable guidelines for practitioners
seeking to enhance the efficiency and effectiveness of similar systems.

2. Sensitivity Analysis: The sensitivity of the system to changes in certain parameters has been thor-
oughly examined. Our findings shed light on the parameters that significantly impact system out-
comes, helping prioritize areas for further investigation or optimization.

3. Trade-offs and Constraints: The parameter sweep has revealed inherent trade-offs and constraints
within the system. Understanding these trade-offs is crucial for making informed decisions in real-
world applications where competing objectives or resource limitations may be present.

23

4. Robustness and Generalizability: By exploring a broad parameter space, we have gained insights
into the robustness of the system across diverse conditions. This understanding is instrumental in
assessing the generalizability of our findings and the applicability of the system in various scenarios.

5. Limitations and Future Directions: It is essential to acknowledge the limitations of our study, in-
cluding potential simplifications and assumptions made during the parameter sweep. Future research
should address these limitations and explore additional dimensions of the parameter space to further
refine our understanding.

In summary, the outcomes of this parameter sweep not only contribute to a nuanced understanding of the
system’s behavior but also provide actionable recommendations for practitioners and researchers. This work
sets the stage for continued exploration and refinement, paving the way for advancements in the field and the
optimization of systems with practical implications.

24

	 Executive Summary
	 Acknowledgments
	1 Introduction
	2 Methods
	2.1 Model Compatibility
	2.1.1 WaterTAP Models

	2.2 The Parameter Sweep Tool
	2.2.1 Sampling Types
	2.2.2 Sweep Types

	2.3 Parallel Manager

	3 Results
	3.1 Water Treatment Model
	3.2 Single-Variable Parameter Sweep
	3.3 Multi-Variable Parameter Sweep
	3.4 Differential Parameter Sweep
	3.5 Parallel Scalability

	4 Conclusions
	References
	Appendix A Parameter Sweep Options
	Appendix B Generative AI Prompts and Responses

