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Executive Summary 
This report presents an updated “harmonization study” documenting the collaborative analysis of 
saline microalgae cultivation and conversion to fuels and products. Four national laboratory 
modeling teams reconvened to investigate the resource, economic, and environmental 
sustainability implications of integrated systems encompassing large-scale algae farms and 
conversion biorefineries. Relative to prior harmonization analyses conducted by these partners, 
the present effort focuses on more near-term technology potential based on the use of nutrient-
replete, high-protein algal biomass compositions (more readily achievable today without 
sacrificing cultivation productivity) coupled with individual algae farms varying in size but 
generally smaller at 3,900 acres on average (more realistic in practice than a fixed 5,000-acre 
farm scale previously considered). Additionally, the present assessment adds further granularity 
around carbon dioxide (CO2) sourcing and transport via carbon capture of nearby point sources, 
as well as handling of high-saline cultivation media and resultant blowdown/disposal processing. 
Finally, this assessment focuses on conversion opportunities to produce both fuel (prioritizing 
sustainable aviation fuel [SAF], in this case via hydrothermal liquefaction [HTL]) and protein 
products for the food and feed markets, recognizing growing needs for such products. 

The overall approach taken in this report is generally consistent with prior harmonization efforts. 
A resource assessment of all potential algae farm sites is first established using the Biomass 
Assessment Tool (BAT), which uses geospatial and temporal models in combination with algae 
strain growth parameters to quantify the national scalability of algae biomass production. 
Outputs from the BAT model are then used in the algae farm techno-economic analysis (TEA) 
models, which subsequently tie into algae conversion TEA models to evaluate the biomass, fuel, 
and protein production implications for individual sites, compiled to national-scale outputs 
across the United States. Life cycle inventory (LCI) data for each identified facility site from the 
BAT, algae farm, and algae conversion models are utilized to perform a life cycle analysis 
(LCA) to determine the potential environmental sustainability impacts of fuel and protein 
production at the regional and national levels. Per the focus as a “harmonization” study, the key 
information flows were synchronized to the greatest practical extent between BAT 
biophysical/geospatial modeling, algae farm and conversion TEA modeling, and LCA modeling, 
such that the resulting outputs for resource, economic, and environmental sustainability potential 
were anchored to the same common framework and set of assumptions.  

The BAT model identified several key biomass production parameters that varied spatially and 
temporally across the Southern United States, including unencumbered land available for 
cultivation, saline groundwater availability, modeled monthly biomass cultivation productivity 
rates, saline pond blowdown requirements as a function of evaporation and local groundwater 
salinity levels, and point-source waste CO2 identification, supply, and energy requirements for 
capture and pipeline transport specific to a given industry process. A large portion of the viable 
production sites identified were shown to be in the South-Central region spanning Texas and 
Louisiana, accounting for roughly 75% of the total area identified and 74% of the total 
microalgae biomass potential. However, the regions supporting the most economical algae 
production were largely concentrated in the Southeast (Florida and nominally Georgia, 14% of 
total area and 13% of total biomass), driven by higher biomass productivities, lower seasonal 
variabilities, and larger algae farm scales. The remainder was identified in the Western region 
encompassing California and Arizona. Despite differences in biomass productivity potential, 
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salinity of the makeup water, salt disposal requirements, and delivered CO2 costs between sites, 
the possibility of producing algal biomass at reasonable prices was demonstrated, with a 
weighted average minimum biomass selling price (MBSP) of $674 per ton (ash-free dry weight 
[AFDW] basis, excluding seasonal storage; all costs presented in 2020 dollars) across the entire 
collection of sites. This corresponded to a total algal biomass production potential of 152 
million tons per year AFDW across 3.9 million acres of total available cultivation pond 
area, representing a cumulative 268 million tons per year of CO2 capture potential based 
on biomass uptake. 

Subsequent conversion of algal biomass to fuels and protein products, using an example 
conversion pathway via HTL with protein extraction pretreatment, was shown to hold promise 
pending market applications and volume constraints for the algal protein coproduct. The 
minimum fuel selling price (MFSP) for fuel production alone was estimated at $8.69 per 
gasoline gallon equivalent (GGE) on average across the full site collection with a 
cumulative fuel potential of 14.4 billion GGE/year (including SAF at 8.6 billion GGE/year). 
This would reduce under a “best-case” scenario to $3.72/GGE with inclusion of algal protein 
coproduction, valued for food applications currently served by products such as whey protein 
and other protein ingredient markets (without applying market volume constraints for such 
products at a cumulative 51 million tons/year of algal protein production), albeit at a lower fuel 
production potential of 7.7 billion GGE/year (4.6 billion GGE/year of SAF). In between these 
bounds, two intermediate scenarios were also identified under algal protein market constraints 
for the 2030 projected global whey protein concentrate (PC) market (3.7 million tons/year) or the 
protein ingredients market (14 million tons/year). The former scenario would achieve an average 
MFSP of $8.49/GGE and total fuel output of 13.9 billion GGE/year, while the latter would 
reduce the average MFSP to $7.89/GGE and total fuel output to 12.6 billion GGE/year. The 
MFSP values for algae HTL facilities that include protein coproduction can be considerably 
reduced, owing to a substantial PC coproduct credit of approximately $13.4/GGE despite a lower 
fuel production rate and added costs for protein extraction.  

For LCA modeling, a biorefinery-level analysis was conducted to quantify the total life cycle 
greenhouse gas (GHG) emissions from all products and their potential GHG emission reductions 
when displacing conventionally produced counterpart products. In this analysis, algal biorefinery 
fuel and protein coproduction do not achieve an overall GHG improvement when compared to 
conventional fuel and soy PC production, but they do demonstrate a significant improvement 
when compared to conventional fuel and whey PC production (given considerably higher GHG 
emissions for conventional production of whey PC versus soy PC). However, the current whey 
PC market is small, and as whey is a coproduct of the cheese industry, its production would not 
be prevented by replacement with algal PC. However, by replacing conventional grid electricity 
and natural gas with zero-carbon-intensity renewable energy sources, an approximately 80% 
reduction in biorefinery-level GHG emissions could be achieved for the overall algal biorefinery, 
which could enable lower GHG emissions than conventional fuel and soy PC production. 
Alternatively, fuel-only production demonstrates a modest 9.4% improvement in GHG emissions 
when compared to conventional fuel production, resulting in a CO2 reduction potential of 41 
million tons per year over the collection of sites that achieve GHG emissions less than 
conventional fuel. Alternatively, when considering allocation of impacts in the LCA, GHG 
impacts allocated to algal PC outweigh the effects of increased emissions and loss of nutrient 
recycling efficiencies when PC coproduction is included, leading to marginally lower GHG 
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emissions for fuels with PC coproduction relative to fuel production alone. Namely, GHG 
emissions from fuel and PC coproduction, without being constrained by market limits, range 
from 48 to 90 g carbon dioxide equivalent (CO2e) per MJ, with a weighted average of 61 g/MJ 
when applying mass allocation, while GHG emissions from the fuel-only scenario range from 69 
to 118 g/MJ, with a weighted average of 85 g/MJ (compared to a reference case for conventional 
fuels at 87 g/MJ).  

Overall, the results from this study highlight the potential for commodity-scale production of 
biomass, biofuels, and protein products that could be enabled by cultivation of high-protein 
microalgae, though also reiterating challenges in fuel yields, costs, and carbon intensities for 
algal systems that could be significantly improved by moving to low-protein/high-lipid algae 
compositional targets as found in prior harmonization studies (recognizing this may reflect a 
longer-term objective to achieve). Additionally, further consideration of other protein food 
scenarios such as meat alternatives is warranted as market opportunities expand for such 
products in the future. 
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1 Introduction 
Over recent years, numerous analyses have been conducted highlighting the potential benefits of 
microalgae for production of renewable fuels, chemicals, and food/feed applications based on 
promising opportunities for decarbonization of such products while avoiding competition for 
land and water resources (Wiatrowski, Davis, and Kruger 2022; Zhu et al. 2020). Microalgae is a 
promising alternative source for protein owing to its nontoxic nature, high protein content, and 
low allergenicity (Becker 2007). Whole microalgae, such as Spirulina and Aphanizomenon, have 
been used as a human food supplement. In addition, approximately 30% of the world’s 
microalgal biomass production is sold for animal feed applications (Caporgno and Mathys 2018; 
Saadaoui et al. 2021). Driven by the need for healthy and nutritious food with low fat, 
cholesterol, and sugar content, microalgae have great potential to become a healthy protein 
source (Soto-Sierra, Stoykova, and Nikolov 2018). As indicated in Becker (2007) and Wang, 
Tibbetts, and McGinn (2021), certain algae strains such as Spirulina have amino acid contents 
comparable to eggs and better than soybeans. In addition, using microalgae to produce protein-
based food/feed does not incur food competition for protein production as with traditional food 
crops, such as soy and peas. More importantly, microalgae can yield higher protein per unit area 
(approximately 4–15 tons/ha/yr) compared to traditional terrestrial crops such as soy 
(approximately 0.6–1.2 tons/ha/yr) and wheat (approximately 1–2 tons/ha/yr), which makes it a 
more attractive protein source considering the near-term potential for farmland degradation 
(Bleakley and Hayes 2017; Koyande et al. 2019). 

Collaborators from Argonne National Laboratory, the National Renewable Energy Laboratory 
(NREL), and Pacific Northwest National Laboratory (PNNL) have conducted a number of 
“harmonization analyses” seeking to quantify implications on environmental sustainability 
metrics, economics, and resource availability for the production and conversion of algal biomass. 
Initial harmonization efforts in 2012–2013 focused on evaluating such metrics as may be 
attributed to technology performance benchmarks as they stood at the time (e.g., biomass 
cultivation productivity rates), coupled with biomass conversion through a lipid extraction-based 
approach (Davis et al. 2012) and hydrothermal liquefaction (HTL) processing (Zhu et al. 2013). 
Subsequently, an updated harmonization assessment was conducted in 2017 focusing more on 
understanding the long-term future potential implications on those metrics moving beyond 
benchmark performance levels, while also highlighting opportunities for employing carbon 
capture of point-source carbon dioxide (CO2) emissions to support more than 100 million tons 
per year of algal biomass production potential at the national scale (Davis et al. 2018). 

The harmonization analyses helped present a clearer picture of costs, carbon intensity, and 
resource constraints for integrated algae biorefinery systems reflecting both current and future 
technology performance projections, based on a harmonized modeling framework employing 
consistent inputs and assumptions. However, past studies have all focused on prioritizing 
production of fuel (renewable diesel) as the primary output from the conversion processes, 
largely seeking to maximize fuel production by employing nutrient depletion before harvesting 
to shift biomass compositions from high-protein (typical in nutrient-replete cultivation) to high-
carbohydrate and/or high-lipid compositions to enable higher fuel conversion yields. While this 
remains a viable approach warranting further research, it presents a more aspirational case that to 
date remains more challenging to achieve, given known trade-offs often incurring penalties in 
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lower cultivation productivity rates when moving to nutrient-deplete harvesting to shift the 
biomass composition to a lower-protein state (Sajjadi et al. 2018; Procházková et al. 2014). 
Additionally, it bypasses an opportunity for algae to contribute to other needs such as protein for 
food/feed applications, supporting agricultural decarbonization as another growing area of 
emphasis for the U.S. Department of Energy’s (DOE’s) Bioenergy Technologies Office (BETO) 
(DOE 2022).  

In 2021, DOE, the U.S. Department of Transportation, the U.S. Department of Agriculture 
(USDA), and other federal government agencies launched a governmentwide memorandum of 
understanding to develop a comprehensive strategy for scaling up new technologies to produce 
sustainable aviation fuel (SAF) on a commercial scale (DOE 2021), resulting in the SAF Grand 
Challenge. SAFs are drop-in fuel blending components derived from renewable or waste-based 
feedstocks that, relative to petroleum-based fuels, provide reduced CO2 emissions. The goals of 
the SAF Grand Challenge include achieving a minimum 50% reduction in life cycle greenhouse 
gas (GHG) emissions compared to conventional fuel and supplying sufficient SAF to meet 100% 
of aviation fuel demand, or 35 billion gallons per year, by 2050. A near-term goal of 3 billion 
gallons per year is established as a milestone for 2030. Most of the current research for algae 
conversion to fuel focuses on diesel and gasoline products. Limited work has been reported on 
jet fuel production from microalgae, and most research reports are focused on hydroprocessing 
of microalgae oils to produce SAF (Bwapwa, Anandraj, and Trois 2018; Gutiérrez-Antonio et al. 
2018).  

To address the potential for producing SAF from microalgae, Argonne National Laboratory, 
NREL, and PNNL reconvened for the present work to conduct a new algae harmonization study, 
this time focused on more near-term deployment potential based on cultivation of nutrient-
replete algae for subsequent upgrading to both fuels and protein products. The work further 
pursues joint modeling efforts similar in nature to the previous harmonization activities focused 
on evaluating resource assessment, techno-economic analysis (TEA), and life cycle analysis 
(LCA) for algal biomass production and conversion extrapolated to national scalability potential. 
Relative to the 2017 harmonization assessment, which focused on longer-term future projections 
both for cultivation performance (elevated compositional quality enriching carbohydrates/lipids 
at reduced protein content) and commercial maturity (large 5,000-acre commercial-scale farms 
significantly exceeding current facility scales) centered around fuel production (Davis et al. 
2018), the current effort focuses on nearer-term deployability and the role of microalgae in both 
fuel and agricultural decarbonization. The 2022 harmonization is focused on addressing the 
following five topics in particular: 

1. Smaller-scale farms consisting of 1,000 acres of production pond area, as a more likely 
design to be deployed commercially in the near term (versus large 5,000-acre 
commercial-scale farms significantly exceeding current facility scales as considered in 
prior efforts). 

2. Cultivation of non-freshwater species to prioritize brackish/saline algae production and 
reduce competition with freshwater resources (no freshwater scenario is considered here). 

3. Increased granularity of model processes for resource assessment and LCA implications 
of waste CO2 capture and delivery, as well as blowdown salt management and 
disposal. 
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4. High-protein biomass compositions, as more readily achievable in the near term at 
concomitant cultivation productivity goals approaching 25 g/m2/day. 

5. Conversion technology pathways centered on TEA and LCA co-prioritizing production 
of fuels (emphasizing SAF) and food/feed from algal protein. 

In light of the differences summarized above (e.g., smaller farms producing higher-protein 
biomass), the results from the present harmonization study are expected to reduce fuel yields and 
increase fuel costs relative to the 2017 harmonization study. These results do not contradict the 
prior 2017 results, but rather supplement the picture to reflect what may be more readily 
achievable in the nearer term from farmed saline algae systems under nutrient-replete cultivation. 
The remainder of this report documents the key modeling inputs, assumptions, and results for 
this updated study, primarily highlighting updated or new methods and assumptions while 
deferring to our prior studies for other details that remain unchanged (Davis et al. 2018). 
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2 Methods 
2.1 Modeling Approaches 

Scope of Analysis 
The scope of analysis spans algal biomass production through harvest, dewatering, seasonal 
storage, and conversion to fuels and protein food/feed coproducts. Process, TEA, and LCA 
modeling is conducted at the individual site level for a single integrated farm/conversion facility. 
This includes sourcing inputs for delivered CO2 and water costs and energy demands, as well as 
saline pond blowdown disposal outputs, from resource assessment models at the local facility 
level of granularity. Likewise, process/TEA/LCA modeling is also conducted for the integrated 
conversion facility processing the dewatered biomass from the farm through HTL for production 
of fuels, evaluating scenarios with and without coproduction of algal protein concentrate (PC) 
across several scenarios for protein market volume capacities. The results at the individual 
facility level are compiled across all facility locations, identified from resource assessment 
modeling through a set of suitability criteria, to generate national-scale resource curves for costs 
and LCA metrics for production of algal biomass and subsequently fuels and protein coproducts. 
The overall workflow for the modeling approach is depicted in Figure 2.1.1. 

 
Figure 2.1.1. Workflow depicting key steps and handoffs between models 

Algae Biomass Resource Assessment 
Similar to prior harmonization efforts, the workflow is harmonized around high-spatiotemporal-
resolution, national-extent resource assessment models identifying suitable algae farm locations 
throughout the conterminous United States (CONUS) subject to land, water, and CO2 availability 
constraints. The resource assessment utilizes PNNL’s Biomass Assessment Tool (BAT) 
modeling methodologies incorporating geospatial and biophysical models to predict 40 years of 
hourly cultivation productivities as a function of location, meteorological variables, and 
multicriteria screening using lab-derived parameterizations for strains of relevance to the BETO 
algae platform. The BAT is a modeling system comprising numerous spatial and numerical 
modules that incorporate (1) multiscale spatial and temporal modeling; (2) physics- and 
biophysical-based modeling to simulate pond temperature, strain-specific biomass productivity, 
and pond management; (3) least-cost transportation modeling for sourcing and moving required 
resources; (4) upstream and downstream resource demand and supply accounting; (5) partial 
techno-economics; and (6) other analyses performed using the best available climate, water, 
land, and infrastructure data, along with environmental constraints, biomass growth rates, and 
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other proximal resource requirements such as nutrient and CO2 sources (Coleman et al. 2014; 
Venteris et al. 2014; Wigmosta et al. 2017; Sun et al. 2020; Xu et al. 2020; Ou et al. 2021).  

A high-performing saline strain investigated under the Development of Integrated Screening, 
Cultivar Optimization, and Verification Research (DISCOVR) project was used in this 
assessment: Tetraselmis striata LANL 1001 (Huesemann et al. 2023). The modeled productivity 
of this algal strain is projected to achieve an annual average of 26 g/m2/day, varying regionally 
across the collection of sites considered, which is in line with out-year performance targets of 25 
g/m2/day targeted by 2030 (DOE 2020). Outputs from the resource assessment models for the 
selected individual farm site locations are exported to algae farm TEA and LCA models and 
include site area, monthly biomass productivities, point-source-captured and pipeline-delivered 
CO2 capital expenses (CAPEX) and operating expenses (OPEX), makeup water 
sourcing/pipeline distance/pumping CAPEX/OPEX and salinity, and saline pond water 
blowdown management CAPEX/OPEX considering forward osmosis (FO) processing, brine 
water disposal through deep-well injection, and freshwater recycling within the farm.  

Building from prior harmonization efforts, the BAT modeling includes the following for the 
present assessment: 

• New location siting (CONUS) for open pond cultivation of microalgae. 
• Open pond temperature model including net consumptive water use tracking. 
• Biomass productivity modeling for saline strains (validated with experimental data). 
• Saline groundwater sourcing and pumping to ponds. 
• Pond salinity tracking and blowdown management (inclusive of net evaporation). 
• Treatment of blowdown water through FO, with freshwater fraction returned to pond to 

reduce groundwater pumping requirement. 
• Disposal of FO brine concentrate through deep-well injection. 
• Identification and use of variable-concentration point-source CO2 for collocation and 

beneficial use including capture, transport, and mass balance accounting. This includes 
high-purity industrial sources and lower-purity, higher-volume sources such as power 
plants utilizing combustion of natural gas and coal.  

Algae Farm Process Modeling and TEA 
The key outputs from the BAT model noted above are next run through NREL’s algae farm TEA 
model for each identified individual farm site. As described in prior reports (Davis et al. 2016, 
2018), the algae farm model consists of a series of 10-acre open raceway ponds scaled to meet 
the total cultivation area identified by the BAT model—in this case varying between 1,000 and 
38,500 acres according to each individual farm site (a deviation from prior harmonization studies 
that assumed a fixed farm size across all locations). The biomass is harvested at a rate (i.e., 
tons/day) consistent with the given farm’s cultivation productivity and size (i.e., tons/acre/day × 
production pond acres), and routed to dewatering across a series of operations to concentrate the 
biomass up to 10 wt % solids in the case of downstream conversion to fuels and PC coproducts, 
or to 20 wt % in the case of downstream conversion to fuels alone (the former scenario requires 
protein extraction to be conducted at a lower biomass concentration). The dewatered biomass is 
then sent to seasonal storage during peak cultivation seasons (typically summer and a fraction of 
spring/fall seasons depending on the site), utilizing a wet anaerobic storage design to minimize 
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degradation, as a means of negating seasonal swings in throughput capacity through downstream 
conversion operations. Resulting capital/operating costs for these operations, as well as CO2 
pipeline delivery, makeup water delivery/disposal, and blowdown FO processing costs scaled 
from BAT model outputs, are calculated through published TEA tools (NREL 2023) to estimate 
the resultant minimum biomass selling price (MBSP) at each individual farm location. 

Algae Conversion Process Modeling and TEA 
The resulting MBSP and seasonal flowrate outputs from the farm models were subsequently sent 
through conversion models, leveraging PNNL’s HTL model pathway as an example case. The 
addition of a protein extraction pretreatment step was included to quantify TEA metrics of fuel 
and protein food/feed selling prices. Predicted product yields at the individual facility scale were 
subsequently compiled into national-scale cost-versus-yield curves spanning all sites identified 
from the resource assessment models. NREL’s combined algae processing (CAP) pathway was 
also evaluated across a number of model configuration scenarios, but was ultimately not included 
as none of the CAP scenarios were found to offer optimal solutions to achieve necessary GHG 
reduction levels within the confines of this study’s fuel/feed focus under high-protein biomass 
compositions (driven primarily by challenging GHG results for animal feed coproduction 
targeted in the CAP cases, in contrast to the HTL pathway’s focus on PC targeting food 
markets). Conversion scenarios consider two conversion pathways. The first is protein extraction 
and recovery to yield algal PC as a coproduct alongside fuels from HTL conversion of the 
residual protein-extracted algae material (requiring a more dilute 10 wt % concentration of 
biomass for protein extraction and accordingly reflecting a slightly lower MBSP from the farm 
model as the input biomass cost). The second is exclusive HTL processing to fuels alone 
(accommodating more concentrated biomass at 20 wt % to reduce HTL processing costs and 
accordingly a marginally higher MBSP reflective of additional dewatering in the upstream algae 
farm model). The TEA model ultimately yields a calculated minimum fuel selling price (MFSP) 
either with or without inclusion of PC sold at a fixed coproduct market value.  

System LCA 
The Greenhouse Gases, Regulated Emissions, and Energy Use in Technologies (GREET) model 
was used for the LCA modeling. The goal of the LCA is to provide life cycle GHG, fossil energy 
use, and water consumption results for algal biomass and biofuel production. The system 
boundary of this LCA study involves the relevant life cycle stages and supply chains of 
operational input, including the material and energy consumption for CO2 capture and transport, 
algae growth, conversion to biofuel, PC coproduct production, fuel transportation, and fuel 
combustion. Capital infrastructure for CO2 delivery, algae ponds, and the conversion facility is 
not included in the scope of the LCA. Two functional units are used: one ton of algal biomass on 
an ash-free dry-weight (AFDW) basis (following cultivation and dewatering) and one megajoule 
of algal biofuel (following subsequent conversion of the biomass through HTL). Global warming 
potential (GHG emissions) is characterized based on the Intergovernmental Panel on Climate 
Change’s Sixth Assessment Report 100-year characterization factors (CH4: 29.8; N2O: 273). 
Fossil energy and freshwater resource consumption are reported on an inventory basis without 
further characterization (i.e., as the sum of coal, natural gas, and petroleum resource extraction 
and the sum of freshwater use across the life cycle). Freshwater use is considerably lower in this 
study than the prior 2017 algae harmonization study, as cultivation is based only on saline water 
inputs (not included in the calculation of freshwater consumption). The GREET model was 
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tailored to the algae farm/conversion operations as reflected in this study, with the application of 
several coproduct handling methods in scenarios involving coproduction of algal PC alongside 
fuels.  

2.2 System Description 

Algae Cultivation System 

Open Pond System 
Figure 2.2.1 presents the general algae farm cultivation framework devised for this study. The 
model is largely based on the set of operations and assumptions in NREL’s 2016 algae farm 
design report (Davis et al. 2016) and the more recent 2017 harmonization report (Davis et al. 
2018), with several modifications. In brief, the inoculum train provides biomass inocula to 
multiple large-scale raceways (10 acres each), in which algae grow until a target density of 0.5 
g/L is achieved. The microalgae suspension is drawn semi-continuously from the raceways and 
sent to a sequential dewatering system composed of settlers, membranes, and centrifuges to 
sequentially increase biomass concentration from 0.05 wt % (0.5 g/L) up to 20 wt % solids (200 
g/L); dewatering system capital costs are scaled to match the harvest rates reflecting maximum 
seasonal productivities in the ponds (specific to each individual farm site). The final dewatering 
step reaches 20 wt % solids, which aligns with cases that only implement HTL conversion 
downstream for fuel production, although for cases that first include protein extraction, the final 
centrifugation step is eliminated to deliver the slurry at 10 wt % solids to downstream 
conversion. As implemented in the 2017 harmonization study, pond circulation is shut off during 
night hours. Seasonal biomass storage, an operation usually considered on the biomass 
conversion side of the supply chain as a means to equalize algae flowrates entering the 
biorefinery (Wiatrowski et al. 2022), was moved into the algae farm boundary for this work to 
facilitate consistent data handoff between teams after accounting for storage costs and 
degradation losses. Costs for additional site development within the farm boundary, such as 
roads and stormwater mitigation, are included in the cultivation system costs from the 2016 
design report.  

For this assessment, the NREL algae farm model was configured to consider monthly inputs for 
biomass productivity and evaporation rate based on BAT outputs (instead of seasonal averages 
as in previous work). Algae farm simulations considered several parameters at fixed values for 
all site locations, such as minimally lined raceway ponds for costing purposes, individual pond 
size of 10 acres, CO2 uptake efficiency of 75% (Huntley et al. 2015), algae strain salinity 
tolerance of 55,000 mg/L, and harvested density of 0.5 g/L. Additionally, to better account for 
elevated pH conditions necessary to achieve CO2 retention efficiencies on the order of 75%, urea 
was implemented as the primary nitrogen fertilizer source in place of historical models that have 
assumed ammonia (which would be lost to outgassing at elevated levels under such pH 
conditions supporting good CO2 retention). Another key modification in this analysis was to 
allow the total farm size to vary based on BAT outputs for local resource availabilities, primarily 
dictated by CO2 availability, discussed in further detail below. This translated to individual farm 
sizes ranging between 1,000 and 38,500 acres (with an average farm size of 3,940 acres, 
compared to a fixed farm size of 5,000 acres assumed in the 2017 harmonization). Other 
parameters (e.g., the basis for inoculum train sizing, on-site CO2, and water circulation) were set 
consistent with Davis et al. (2016). Similar to the 2017 harmonization, CO2 is sourced via carbon 



8 

capture and high-pressure pipeline transport from off-site flue gas point sources, but now 
reflecting more granular cost and energy demand details specific to the local source, as described 
further below.  

The open pond was established under saline operating conditions with a target salinity set at 
55,000 mg/L, which matches the maximum salinity for lab trials conducted on the saline strains 
considered without detrimental impacts in productivity observed to date (Klein and Davis 2023). 
Each site has a unique groundwater salinity and well depth to access the saline groundwater as its 
primary water source. A key addition in the present harmonization study that was not utilized in 
prior studies is the use of FO to process blowdown water, given the high-salinity conditions 
reflected in this design. The BAT pond temperature and microalgae growth model is run from 
1979 to 2019 at an hourly time step. If the pond salinity exceeds the established 55,000-mg/L 
salinity threshold, a volume of water is removed from the pond (blowdown) and replaced with 
new source water, first from any available FO freshwater recovered from blowdown processing, 
with the remaining volume fulfilled from the saline groundwater source to close water balances 
after accounting for salinity/temperature-dependent evaporation. The objective is to maintain 
pond salinity as close to the established operating threshold as possible. The blowdown water is 
modeled through a simplified FO water treatment model that yields 82% of the blowdown water 
as freshwater and is recycled within the system. The remaining 18% of the blowdown is sent to 
an on-site deep injection well. CAPEX and OPEX are established for the source water and brine 
injection wells, as well as the FO system, which are all scaled according to the site-specific water 
demand. For the FO system, we assume an operational treatment cost at $0.60/bbl and 5 kWh/m3 
of blowdown water treated. The FO system will concentrate brines to 230,000 mg/L and provide 
a permeate at 300 mg/L for recycle in the farm system. 

 
Figure 2.2.1. Framework of the algae farm model employed in this study. The centrifuge can be 

bypassed so the algae farm delivers 10 wt % solids for conversion in scenarios with protein 
coproduction. 

The dewatering section of the algae farm was slightly modified in this study by adding two 
minor intermediate operations. First, a basket strainer was added prior to the secondary 
membrane step to reduce exogenous ash/inorganic suspended solids, assumed to reduce total ash 
content by 50%. Additionally, in order to control salt concentrations to a manageable level for 
downstream conversion equipment protection (e.g., high-pressure homogenization [HPH] 
utilized in HTL pretreatment) and in consideration for the resultant protein coproduct destined 
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for food applications, a solids washing operation with freshwater was added before the 
centrifugation step to reduce salt content from 55,000 mg/L down to 15,000 mg/L. To avoid 
externally sourced freshwater demands in an otherwise saline-focused cultivation model, the 
freshwater required for this washing step was sourced by splitting the treated water from the on-
site FO unit (already in use to process the blowdown water), routed both to the salt washing step 
and for internal recycle to the ponds. It is noteworthy that the sizing of the FO unit is deeply 
connected to the washing operation, with the former scaled to fully offset the freshwater 
requirements in the latter. In higher-salinity cases (approximately 12% of all assessed points), all 
freshwater demand for washing can be supplied by the FO output from blowdown management 
alone, with the remainder of the freshwater sent to the ponds for salinity reduction. However, in 
the remaining 88% of cases with lower salinity, additional saline water must be pumped from the 
groundwater source and sent to the FO unit strictly to meet washing demands. This strategy 
increases both CAPEX and OPEX tied to salinity management (scaling FO and blowdown 
disposal costs and energy demands from BAT model values), but eliminates the need for 
procuring freshwater from outside the boundaries of the algae farm as a higher priority in this 
work. The costs for makeup saline groundwater (capital costs and pumping power for the 
groundwater well) were likewise scaled from the BAT model, specific to each individual farm 
site and associated local sourcing/delivery details for those inputs. Makeup groundwater was not 
assumed to require filtration for supply to the production or inoculum ponds (such a cost would 
likely be minimal if it were required in specific locations).  

To better represent the individual characteristics of each algae farm under evaluation, several 
parameters have been either pulled directly as provided by the BAT model or calculated using 
mass balance outputs from the NREL algae farm combined with dimensioning parameters 
provided by the BAT team, as detailed in Table 2.2.1. Algae biomass composition based on 
experimental data for nutrient-replete cultivations of Tetraselmis striata LANL 1001 (Klein and 
Davis 2022; Huesemann et al. 2023; Song et al. 2023) was considered in this work, as provided 
in Table 2.2.2 (further discussion and parameterization of this strain is provided in the next 
section). While the composition assumed here reflects high-protein biomass typically cultivated 
under nutrient-replete conditions as the most direct way to maximize productivity in the near 
term, several performers in industry have achieved elevated lipid compositions of 25%–35% or 
higher while maintaining high productivity rates, as would translate to higher fuel yield potential 
and lower dependency on protein coproducts (Klein and Davis 2023; Hazlebeck 2023). 
Calculation of mass and energy balances follows the same practices as presented elsewhere 
(Davis et al. 2016). 
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Table 2.2.1. Origin of Parameters for Algae Farm Simulations 

Algae Farm BAT Model 
Technical Parameters 

Pond design and individual pond size (10 acres) 
Harvested density 
Cultivation nutrient demands based on biomass 
composition 
Net saline makeup water based on BAT evaporation 
+ blowdown rates vs. FO freshwater recycles  

Individual farm size (>1,000 acres, based on 
total production pond area) 
Monthly biomass productivity (g/m2/day) 
Monthly evaporation rate (translated to cm/day) 
Salinity of makeup water (mg/L) 
Salinity tolerance of algae strain (mg/L) 
Salinity blowdown removal rates 

CAPEX Items 
Inoculum train 
Algae production ponds 
CO2 on-site storage and piping 
On-site water circulation 
Dewatering (including basket strainer and water 
wash for inorganic solids/salt removal, respectively) 
Seasonal biomass storage 

FO unit ($/vol throughput) 
Deep-well injection system ($/vol injection) 
Saline groundwater well ($/vol extraction) 

OPEX Items 
Nutrients (urea, diammonium phosphate) 
Power required by the inoculum train, production 
ponds, and dewatering system 
Chiller utility (photobioreactor inoculum cooling) 
Fixed operating costs (labor, maintenance) 

Delivered farm-gate CO2 price ($/t) 
Power required by the FO unit and the 
groundwater well system (kWh/m3) 
Power required for brine well injection (kWh/m3) 

Table 2.2.2. Composition Assumed for Nutrient-Replete T. striata (Klein and Davis 2022) 

Component Composition (AFDW) 
Fatty acid methyl ester (FAME) lipids 10.6% 
Non-FAME lipids 5.7% 
Sterol 0.6% 
Fermentable carbohydrates 7.7% 
Non-fermentable carbohydrates 1.5% 
Protein 44.2% 
Cell biomass 29.8% 
Total 100% 
Ash (% dry weight) 20.4% 
Elemental Composition 
Carbon 48.1% 
Hydrogen 7.4% 
Oxygen 33.9% 
Nitrogen 9.2% 
Sulfur 0.2% 
Phosphorus 1.2% 
Total 100% 

Table 2.2.3 presents the main outputs of the algae farm model provided to the conversion TEA 
teams. The main metrics include the MBSP of algae cultivated both before and after inclusion of 
long-term seasonal storage, biomass output on daily and yearly bases, and biomass composition 
before and after seasonal storage. All costs were updated to 2020 dollars for this work. Apart 
from these parameters, the algae farm model also provided detailed process input and output 
inventories to the LCA team for the environmental assessment of algal biomass production. 
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Table 2.2.3. Main Metrics Supplied from the Algae Farm Model for Downstream Conversion TEA  

Parameter Description 
MBSP ($/ton AFDW) Before and after long-term storage, given in 2020 dollars 
Total biomass output (tons/day, million 
tons/yr, and tons/acre/yr AFDW) 

Average and seasonal values, before and after long-term 
storage 

Biomass concentration (wt % AFDW) Concentration after two-stage dewatering (for protein 
extraction/coproduction scenario) or three-stage dewatering 
(for fuel-only scenario) 

Average biomass compositional profile Before and after long-term storage 

The life cycle inventory (LCI) for algae cultivation used for the LCA includes the use of 
electricity, urea, diammonium phosphate (DAP), CO2, the blowdown of saline water, and 
emissions. Taking the site with median GHG emissions as an example, the detailed inventories 
for 10 wt % and 20 wt % solids AFDW, both with (net) and without (gross) recycling from 
downstream conversion, are illustrated in Table 2.2.4. In the case of 10 wt % solids AFDW, the 
material is routed to conversion for production of both protein and fuel. On the other hand, the 
scenario with 20 wt % solids processes the material through HTL alone and only produces fuel. 
Table 2.2.4 shows that more CO2 and nitrogen (urea) can be recycled when only fuel is 
produced. For all the selected sites, in the scenario involving both PC and fuel production 
(without constraining protein coproduct market limitations), recycling from conversion reduces 
CO2 demand by 0.670 to 0.681 kg, urea demand by 0.0592 to 0.0602 kg, and DAP demand by 
0.0416 to 0.0423 kg. In the scenario that only produces fuel, recycling from conversion reduces 
CO2 demand by 0.887 to 0.902 kg, urea demand by 0.154 to 0.157 kg, and DAP demand by 
0.0402 to 0.0408 kg. Additionally, there is no external freshwater consumption in the algae farm 
model, as only saline makeup water is utilized (including via FO desalination to provide 
supplemental freshwater for salt washing when required). 

Table 2.2.4 An Example for LCI of the Algae Farm Based on the Median GHG Site, With and 
Without Consideration of Recycles From Downstream Conversion  

 10 wt % solids AFDW (whey 
PC without market limit) 

20 wt % solids AFDW   
(fuel only) 

 Without 
recycling 

Net, with 
recycling 

Without 
recycling 

Net, with 
recycling 

Resource consumption, kg/kg AFDW     
CO2 (counted as biogenic) 2.3 1.6 2.3 1.4 
Urea 0.17 0.12 0.17 0.020 
DAP 0.051 0.009 0.051 0.011 
Total process water input (freshwater) 0 0 0 0 
Electricity demand, kWh/kg 0.60 0.60 0.61 0.61 
Output streams, kg/kg AFDW     
Water in biomass product stream 9.0 9.0 4.0 4.0 
Water sent to blowdown 228 228 223 223 
Algae lost in blowdown 0.0019 0.0019 0.0017 0.0017 
Air emissions, kg/kg AFDW     
Water lost to evaporation 215 215 215 215 
CO2 outgassing from ponds (counted 
as biogenic) 0.58 0.58 0.58 0.58 

O2 to atmosphere 1.4 1.4 1.4 1.4 
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Strain Parameterization 
For BAT modeling strain parameterization, two high-performing saline strains of investigation 
under the DISCOVR project were considered in this assessment: Picochlorum celeri (generally 
optimal for warm seasons) and Tetraselmis striata LANL 1001 (generally optimal for cold 
seasons), as described in Huesemann et al. (2023) and Song et al. (2023). These strains were lab 
characterized using a bench-scale photobioreactor, MC-1000 multi-cultivator. The light intensity 
for each column in the MC-1000 was programmed individually, ranging from 20 to 2,000 μmol 
m−2·s−1. The light cycle for all the columns was set to 14 hours light and 10 hours dark. The 
cultures were sparged with 0.5% CO2-enriched air, and the pH was kept near 7.5. The 
temperature levels tested were 5°C, 10°C, 15°C, 20°C, 25°C, and 30°C for T. striata and 20°C, 
25°C, 30°C, and 35°C for P. celeri. 

The biomass concentration of eight tested cultures, measured in optical density at 720 nm 
(OD720), was maintained between 0.1 and 0.3 by automatic optical density reading and dilution 
during the light period. The maximum specific growth rate (μmax) was calculated by taking the 
slope of the logarithm of optical density versus time curve for each growth period when optical 
density increased from 0.1 to 0.3. Similarly, the dark respiration rate (μd) was also calculated 
using the slope of the logarithm of optical density versus time curve. This calculation was done 
only using the data during the dark period. At each temperature, the cultures were grown for at 
least 7 days, which allowed repeated dilution and determination of μmax and μd. The μmax is 
plotted as a function of temperature and light intensity. For example, in Figure 2.2.2, at each 
temperature, μmax of T. striata increases with increasing light intensity. Apparent photoinhibition 
was observed at low temperatures (e.g., 5°C, 10°C, 15°C) with light intensity above 1,000 
μmol·m−2·s−1. The highest μmax observed was 4.0 day−1, measured in the 1,500-μmol·m−2·s−1, 
30°C culture.  

 
Figure 2.2.2. The maximum specific growth rate of T. striata LANL1001 as a function of light 

intensity and temperature 

Prior to integrating the biomass growth model into the BAT, the model was validated against 
growth data collected from outdoor raceway ponds at the Arizona Center for Algae Technology 
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and Innovation (AzCATI) during the DISCOVR consortium project. In total, 83 batch culture 
runs were simulated for P. celeri and 96 batch culture runs were simulated for T. striata. The 
simulated biomass productivity showed an error of ±20% compared to observations, but on 
average, it was below 10% for both strains. This is significant considering differences in 
photobioreactor lab conditions and outdoor raceway ponds. In the BAT, the biomass growth 
model was run independently for each site in the CONUS, followed by running a strain rotation 
process based on a site-specific cumulative monthly total unit-area biomass output (kg/ha). Sites 
with a modeled annual average biomass productivity potential of ≥25 g/m2/day were used in the 
remainder of the analysis. We recognize the current state of performance from DISCOVR for 
either of these strains has not yet reached such productivity levels, being most recently 
demonstrated closer to an annual average of 18 g/m2/day (Klein and Davis 2022). No additional 
explicit biomass productivity numerical scaling was performed as was done in past 
harmonization efforts. It is noted, however, that the pond temperature model, biomass growth 
model, and strain rotation process did not threshold or bin the pond temperatures to the lab-
characterized values of 5°C–30°C (T. striata) and 20°C–35°C (P. celeri), and it is expected that 
the modeled biomass may be somewhat overpredicted for T. striata, as modeled pond 
temperatures exceeded what was lab parameterized. Accordingly, T. striata was predicted by the 
BAT algae productivity model to be the optimal strain in all months/locations, and P. celeri was 
not utilized in the BAT models through a seasonal rotation approach (in contrast with optimal 
performance observed in DISCOVR trials to date [Klein and Davis 2022]). We emphasize that 
this is not to imply that T. striata in fact should be implemented year-round at all sites, but rather 
that there was an implied extrapolation in parameterization values relative to outdoor trials. This 
is in part due to lab testing that was not able to capture temperature ranges at all modeled sites 
across the country. This led to the universal selection of T. striata in this assessment, although 
this ultimately has minimal impact on the overall results given the threshold for >25-g/m2/day 
annual productivity rates aligning with the goal in this study. (At the time of writing, the lab-
parameterized values for both saline strains have been expanded to a broader temperature range, 
but these expanded strain parameterization tables were not available in time for a full rerun of the 
process/TEA/LCA harmonization analysis reported herein.) In the future, the strain rotation 
algorithm will be adapted to test for modeled pond temperature ranges before competing strains 
on monthly biomass productivity totals.  

FO Membrane System 
Desalination technologies are categorized into two types: thermal-based and membrane-based. 
For this study, the FO membrane system was chosen to desalinate saline groundwater due to its 
cost-effectiveness and lower energy when compared to other desalination technologies 
(Panagopoulos et al. 2019). The electricity used for saline water pretreatment and FO is 0.0055 
kWh/L, while the electricity consumption for deep-well injection is 0.0012 kWh/L 
(Panagopoulos et al. 2020; Thiel et al. 2015). The electricity consumption for the FO membrane 
system has been accounted for in the total algae farm electricity demands. As noted above, 82% 
of the incoming water to FO is treated and internally recycled as freshwater for use in the algae 
farm (salt washing and return to ponds to reduce salt concentration). The remaining concentrated 
high-salinity wastewater is subsequently disposed of through deep-well injection. 
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The LCI for FO membrane fabrication is adapted from Coday et al. (2015) and adjusted to a flat 
sheet membrane configuration based on Zhang et al. (2019). We omitted the cleaning chemicals 
specified by Coday et al. (2015), as the feed for the FO membrane system is largely saline water 
with minimal biomass solids having first passed through primary clarification via settling, and as 
a result, it is assumed that freshwater is sufficient to wash the membrane periodically to avoid 
fouling. The life span of the FO membrane system is presumed to be 5 years based on Linares et 
al. (2016). The detailed LCI of the FO membrane system and the data sources are provided in 
Table S13, and the environmental impacts of FO membrane synthesis are provided in Table S28. 

CO2 Capture and Transport 
The present analysis maintains the use of off-site point-source CO2 capture and pipeline transport 
but incorporates further granularity to reflect local point-source capture costs and energy 
demands relative to the 2017 harmonization study. The CO2 transport model is a location-
allocation spatial network model that uses a point-source emission location, the source type, and 
the total annual CO2 supply associated with that location. The CO2 point-source data are 
assembled and deconflicted from numerous sources, including (1) the U.S. Environmental 
Protection Agency 2020 Greenhouse Gas Reporting Program, which limits reporting to ≥25 kt 
carbon dioxide equivalent (CO2e) per year (U.S. Environmental Protection Agency 2020); (2) the 
National Energy Technology Laboratory’s National Carbon Sequestration Database Atlas V 
database (Bauer et al. 2018); (3) Middleton et al. (2014) assembled data, which include sites <25 
kt CO2e per year and those identified with a beneficial use already; and (4) Homeland 
Infrastructure Foundation-Level Data (U.S. Department of Homeland Security 2019). Utilizing 
the combination of data sources, the resulting CO2 point sources in the CONUS were manually 
validated against 2020 satellite imagery, Google web mapping services, business listings, and 
company websites for their spatial position and verification of active operations. This was a key 
process step, as most CO2 point sources were mislocated from the actual facility (0.25–8 miles), 
or a headquarters office location was located instead of the actual facility. Numerous businesses 
had assumed new ownership or gone out of business, requiring subsequent updates to the data. 
Finally, new businesses came online, requiring additional validation activities. Some of these 
newly reported facilities serve as demonstration facilities, which were not retained for our 
purposes in this study due to the likely variable operations and higher uncertainty for future 
operation. 

The 2020 annual CO2 emissions data from the Greenhouse Gas Reporting Program were used 
where available, and other sites (<25 kt CO2e per year) used the latest known CO2 emissions 
data. Because annual data are reported, we assume an equal daily mass availability of CO2, and 
pipeline calculations were established to hold 8 hours of additional CO2 overnight, a process 
known as line packing. The model assumes that 80% of the reported annual emissions are 
available for transport. The transport model defines the most optimal route between the source 
and algae farm, preferentially using existing rights-of-way and other corridors and avoiding 
sensitive areas, off-limits areas, and urban areas, similar to what was defined in the land 
screening model. The pipeline distance and CO2 transport mass dictate the pipeline diameter and 
any required mid-line pumping stations and assumes a 30-year design life. All the materials, 
labor installation costs, control systems, permitting, right-of-way damages, and other 
miscellaneous costs are incorporated into the CAPEX. The OPEX is established through annual 
labor, pipeline and pump maintenance, and energy costs. Details of the CO2 transport model and 
CAPEX/OPEX costing are provided in the 2017 harmonization report, with the exception that 
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costs are adjusted to 2020 dollars (Davis et al. 2018). Alternative means of capturing flue gas 
CO2 are also possible, such as a bicarbonate/carbonate shuttle approach employed historically by 
Global Algae Innovations (www.globalgae.com/). Such an approach could offer a lower-
cost/lower-energy means of capturing CO2 though would require being collocated with the flue 
gas source and was not included in the scope of this work. 

The total hourly carbon demand is based on new biomass productivity for each time step, as 
established by the biomass growth model runs. The carbon demand is calculated by: 

 𝐷𝐷𝐶𝐶𝐶𝐶2 = 𝐵𝐵×𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐸𝐸𝐶𝐶𝐶𝐶2×𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶2

 (Eq. 1) 

where: 

DCO2 = CO2 demand (kg/h) 
B = AFDW biomass production rate per time step (kg/h) 
WCBio = Carbon fraction in biomass (0.55) 
ECO2 = CO2 utilization efficiency (0.75) 
WCCO2 = Carbon fraction in CO2 (0.273). 
 

In the location-allocation model, pond sites that are closer to the CO2 point source are given 
preferential access to the CO2; as CO2 supply remains, it is allocated to additional sites in order 
of transport distance. The carbon fraction in biomass assumed here for setting CO2 demands 
(0.55) was set consistently with the prior 2017 harmonization study, although in this case this is 
somewhat conservative, as the carbon content for high-protein algae is somewhat lower (0.48 
applied in the algae farm TEA model as noted in the open pond design description above). 

It is notable that the ECO2 parameter in practice will have dynamic variability associated with it 
based on outgassing rates driven by pond pH, salinity concentrations, and pond temperature. The 
current version of the pond model does not simulate pH dynamics, but rather aligns with the 78% 
utilization rates in saline water open pond experiments documented in Huntley et al. (2015). A 
recent literature survey on the topic revealed CO2 utilization efficiency ranges from 25% to 90%, 
with a median value of 66% across various experiments and pilot-scale implementations (Putt et 
al. 2011; Beal et al. 2012; Langley et al. 2012; De Godos et al. 2014; Huntley et al. 2015; Kuo et 
al. 2018; Schoenung, Efroymson, and Langholtz 2019; Eustance et al. 2020). 

The CO2 capture and compression costs and required energetics at the point source were updated 
from the previous harmonization effort, using values provided in Table 2.2.5 based on future 
projections extrapolated from literature spanning a range of sources including natural gas and 
coal-fired power plants, ethanol and renewable natural gas production, and a range of industrial 
manufacturing operations. The GIS point-source CO2 data identify the source type, thus allowing 
for a joining of the capture and energetics. The CO2 capture, compression, and transport 
modeling for sites that can be supplied according to the carbon supply and demand are then 
subject to a ≤$75/tonne (≤$83/ton) cost threshold based on delivered cost to the algae farm. Sites 
that exceeded this cost threshold were excluded. No further moisture removal is assumed for 
high-pressure CO2 pipeline transport after cost/GHG burdens are assigned for carbon capture at 
the point source.  

http://www.globalgae.com/
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The estimates for future target (2040–2050) CO2 capture and compression energy requirements 
presented in Table 2.2.5 are made using regression relationships between energy use and CO2 
concentrations based on results obtained from Carnegie Mellon University’s Integrated 
Environmental Control Model (Integrated Environmental Control Model Team 2019; Singh, 
Banerjee, and Hawkins 2023). The future estimates assumed reduced energy use based on 
anticipated development of CO2 capture technologies for the different CO2 sources. We 
performed another regression between the future capture energy and the CO2 concentration at 
90% capture and obtained the following relationship: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  � 𝑀𝑀𝑀𝑀
𝑘𝑘𝑘𝑘𝑘𝑘𝑂𝑂2

� = 100.2183−0.3124𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  (Eq. 2) 

where: 

β = CO2 concentration in gas (mol%) 

There were a few exceptions to the capture energy that we considered. For instance, two types of 
point sources considered here (ethanol and renewable natural gas processing) result in a nearly 
pure CO2 stream. These two sources were therefore assigned a capture energy burden of about 0 
MJ/kg CO2. CO2 compression energy of 0.38 MJ/kg CO2 for all the sources was added to 
compress the CO2 to a 137-bar pressure, suitable for pipeline transport. The energy use for CO2 
capture and compression ranged from 1.4 to 1.5 MJ/kg CO2 for natural gas combined-cycle 
power plants with a flue gas CO2 concentration of 3%–5%. For coal combustion power plants, 
total energy use was close to 1.1 MJ/kg CO2. Coal power plants are the main CO2 source for this 
study for use in algae ponds as identified from BAT. However, some other high-purity sources 
played a role. For instance, CO2 can be captured and compressed from natural gas processing 
plants at 0.75 MJ/kg CO2. Natural gas processing has the advantage of technological readiness, 
as most existing CO2 capture facilities globally belong to this sector. Following carbon capture 
from the different CO2 sources, the CO2 stream is compressed to supercritical range and 
transported via pipelines for algae cultivation. 

Direct air capture (DAC) of carbon is not currently considered as part of the scope of this study 
but may be evaluated in a future assessment. DAC could substantially increase the total algal 
biomass/biofuel potential relative to the results presented here, as it would decouple the farm 
siting constraints from nearby CO2 point source availabilities; even sourcing 50% of CO2 
requirements from DAC would double the amount of available CO2 for biomass cultivation 
relative to point-source capture and accordingly increase the total algal biomass resource 
potential, as CO2 availability was the main constraining factor for algae farm siting in the BAT 
model. Moreover, if power and industrial decarbonization continue to progress over the coming 
decades (i.e., the algae system plant life of 30 years assumed in this study), there may be fewer 
CO2 point sources on which algae farms can rely over that time frame, further shifting the 
priority to DAC deployment to support widescale algae farm development. Early assessment cost 
factors for DAC may be prohibitive, though, with current capture costs varying between $250 
and $600 tonne/CO2 ($276 and $661/ton) and future targets for the next decade suggesting 
capture costs of $100–$200 tonne/CO2 ($110–$220/ton) (Baker et al. 2020; International Energy 
Agency 2022; DOE 2023). 
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Table 2.2.5. CO2 Capture Cost and Energetics for Current and Future Scenarios by Source Type. 
Zero values are artificially assigned for bioethanol and renewable natural gas; otherwise, values are sourced from 

Massachusetts Institute of Technology (2016); Esposito et al. (2019); and Pilorgé et al. (2020). 

Source CO2 
Concentration 

(mol%) 

CO2 Compression 
Energy 

(kWh/tonne CO2) 

Cost of 
Capture 

($/tonne CO2) 

CO2 Capture 
Energy (MJ/kg 

CO2) 
   Current Future Current Future 
Natural gas combined cycle 3.5 

Electrical energy: 
107 

76 51 3.51 1.06 
Pulverized coal  12 47 31 2.42 0.69 
Integrated gasification 
combined cycle 40 29 19 1.42 0.45 

Bioethanol 99 0 0 0.00 0.00 
Refining 15 43 29 1.39 0.64 
Hydrogen 45 28 19 1.39 0.43 
Ammonia 45 28 19 1.78 0.43 
Steel 22.5 37 25 1.72 0.55 
Cement 25 35 23 0.00 0.53 
Renewable natural gas 
processing 99 0 0 0.00 0.00 

For purposes of handling the CO2 sourcing in LCA, the strategy used here for coproduct 
handling was a cutoff (or incremental) approach. In this approach, the benefits of avoided CO2 
emissions are entirely attributed to the biofuel. This approach has been used for most of the 
studies of CO2 utilization to date within the Office of Energy Efficiency and Renewable Energy 
programs and is the one used in the previous algae harmonization report and BETO supply chain 
sustainability analysis studies (Cai et al. 2021). In this approach, the emissions arising from CO2 
capture, fuel processing, and ancillary steps are allocated to the biofuel. However, the emissions 
from fuel combustion are not considered because it is assumed that the CO2 would have been 
emitted to the atmosphere had it not been captured. This approach is more useful in simplifying 
LCA data requirements, but it may have some shortfalls in considering future dynamics. More 
details may be found in Yoo et al. (2022) and Cooney et al. (2022). 

Alternative approaches for coproduct handling with respect to CO2 sourcing could be 
substitution (recommended by the National Energy Technology Laboratory in its CO2 utilization 
LCA guidance [Skone et al. 2022]) or allocation. Considering these alternative approaches could 
be useful in future work but was outside the scope of this report. It is notable that in the business-
as-usual case, system expansion yields identical result as the incremental approach (Cooney et al. 
2022).  

Algae Conversion via Protein Extraction and HTL  
In this study, a preliminary economic analysis for an algae HTL conversion and biocrude 
upgrading system with protein extraction pretreatment was developed. High-protein saline algae 
biomass is assumed to be the feedstock for the system, as described above. Different from 
previous algae HTL techno-economic analysis studies by PNNL, for scenarios considering 
coproduction of algal protein, the system evaluated in this study includes protein extraction from 
an HPH pretreatment step followed by HTL conversion to SAF as one of the primary products. 
Alternatively, for scenarios considering only fuel production, conventional HTL conversion is 
modeled (processing the whole algal biomass material delivered from the farm models) without 
the additional HPH pretreatment and protein recovery steps. The purpose of this study is to 
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evaluate trade-offs of adding high-purity protein and SAF production to an algae HTL 
conversion system. The process design and cost analysis is based on PNNL’s current 
experimental work, previous TEA studies, and relevant literature (Zhu et al. 2020, 2021, 2023; 
Jiang et al. 2019; Safi, Rodriguez, et al. 2017; Safi, Olivieri, et al. 2017; Parimi et al. 2015; 
Carullo et al. 2022; Gifuni et al. 2020; Bylund 1995). The previous sequential two-stage HTL 
testing conducted by PNNL (Zhu et al. 2021) reflected acid pretreatment for cell disruption to 
extract carbohydrate and other compounds and then HTL testing of acid-pretreated algae. 
Because both the acid and HPH pretreatment operations serve a similar function of cell 
disruption, the HTL testing results of the acid-pretreated algae verified the feasibility of HTL 
conversion of algae after HPH pretreatment. The biocrude yield of protein-extracted algae (PEA) 
is estimated based on the biocrude yield correlation relationship developed by Jiang et al. (2019) 
as a function of the biochemical composition of PEA taken from the process model.  

 
Figure 2.2.3. Block-flow diagram of the algae HTL conversion and biocrude upgrading system for 

fuel and protein production and fuel production only pathways 

Figure 2.2.3 shows the simplified block-flow diagram of the algae HTL conversion system. In 
the pathway of coproducing algal protein alongside fuels, algal biomass with 10 wt % solids after 
dewatering and storage is sent to the conversion system. The 10 wt % or lower concentration of 
solids is required for efficient protein extraction (Safi, Olivieri, et al. 2017). The diluted algae 
slurry is pretreated via HPH for cell disruption to release intracellular protein and other 
components. The released protein is then extracted via alkaline solubilization followed by a 
solid-liquid separation step. The solid stream, referred to as PEA, is sent to the HTL unit for 
biocrude generation; alternatively, in the pathway considering only fuel production, the biomass 
dewatered to 20 wt % is routed directly from the algae farm to the HTL unit. The liquid stream is 
acidified to precipitate the solubilized protein, and then the stream is separated via filtration. The 
separated protein solids are spray dried to produce a dry protein powder to enable longer shelf 
life and lower transportation costs compared to liquid protein products (Carter et al. 2018). The 
aqueous stream from the protein extraction process, containing soluble organics, is assumed to 
be recycled to the algae farm.  
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PEA from the protein extraction process is roughly 35 wt % solid content following solid-liquid 
separation. Makeup water is added to reduce the solid content to 20 wt % to improve its 
pumpability. The PEA slurry (or alternatively the whole biomass slurry at 20 wt % from the 
algae farm model, in the case of fuel production only) is then pumped to the HTL reactor. 
Condensed-phase liquefaction then takes place through the effects of time, heat, and pressure. 
The resulting HTL products (biocrude, solid, aqueous, and gas) are separated. The aqueous phase 
is sent to an anaerobic digestion unit to generate biogas for process heating. For the fuel 
production only pathway, the HTL aqueous phase is directly recycled to the algae farm. The gas 
stream from HTL is also used for process heating. The HTL solid stream is subjected to acid 
digestion to recover phosphorus components from the ash. The acid digestate and the treated 
water from the anaerobic digestion unit are assumed to be recycled to the algae farm. The HTL 
biocrude is upgraded via hydrotreating and hydrocracking to remove oxygen, nitrogen, and other 
heteroatoms. The upgraded oil is then fractionated via distillation to generate diesel-, jet-, and 
naphtha-range fuels. Nitrogen levels of the jet fuel cut (JFC) in the hydrotreated oil were 
significantly higher than conventional petroleum-based jet fuel based on PNNL testing results. 
Therefore, a hydrodenitrogenation (HDN) step was assumed to remove excess nitrogen in the 
JFC. The JFC after HDN processing was assumed to be the final SAF product. While a nitrogen 
limit has not been established for SAF, this additional step has been incorporated into the TEA to 
account for the possibility that a final polishing step may be needed to reduce nitrogen to trace 
levels. The aqueous phase from the upgrading process is also assumed to be recycled to the algae 
farm. A hydrogen plant is included for hydrotreating, which is assumed to be collocated with the 
HTL conversion process. Flue gas containing CO2 is recycled to the farm. 

The major process design assumptions for the protein extraction pretreatment step are listed in 
Table 2.2.6. HPH was selected in this study for cell disruption based on its high protein release 
efficacy and relatively lower energy input for algae protein extraction compared to other 
methods, including bead milling and pulsed electric field (Safi, Rodriguez, et al. 2017; Safi, 
Olivieri, et al. 2017; Parimi et al. 2015; Soto-Sierra, Stoykova, and Nikolov 2018). Based on data 
from Parimi et al. (2015), increasing the pH from 8 to 12 was shown to increase the protein 
recovery from 78% to 88%. Considering the increase in protein recovery efficiency was only 
10% for such a large swing from pH 8 to 12, a pH of 8 is assumed in this study to facilitate lower 
use of alkali and acid than would be required at pH 12, while still maintaining relatively high 
protein recovery. For other components in algae, HPH combined with alkali solubilization was 
assumed to release more than 60% of the lipid and 49% of the carbohydrates to the protein 
extract stream based on Carullo et al. (2022). The algae cell biomass is assumed to primarily 
report to the PEA after filtration. For different algae strains or operating conditions, including pH 
and slurry concentration, the recovery efficiencies for these components might be different, 
which need to be verified by future testing work. 
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Table 2.2.6. Major Design Assumptions for Protein Extraction Process 

Processes Model Assumptions Sources 
High-pressure homogenization  Safi, Rodriguez, et al. (2017); 

Safi, Olivieri, et al. (2017) 
Feed slurry solid wt %, dry basis 10  
Temperature, °C 30  
Pressure, bar 1,500  
Pass 1  
Power consumption, kWh/kg dry basis 0.44  

Alkali solubilization and filtration  Parimi et al. (2015); Carullo et al. 
(2022) 

pH 8 (by adding NaOH)  
Components recovery to the supernatant   

Protein, % of feedstock protein 77.8%  
Lipid, % of feedstock lipid 65%  
Carbohydrate and other components, % 
of these components in feedstock 

24%  

Products yield, g/g feedstock dry basis  Estimated based on component 
recovery assumptions 

Protein extract 0.54  
PEA 0.46  

Acid precipitation and filtration  Parimi et al. (2015); Gifuni et al. 
(2020) 

pH 4 (by adding HCl)  
Component recoveries to the protein pellets   

Protein, % of protein in inlet stream 70.6%  
Lipid, % of lipid (FAME) in inlet stream 50%  
Carbohydrate and other components, % 
of components in inlet stream 

50%  

Protein drying Spray drying Bylund (1995) 
PC product composition, dry wt %  Estimated based on component 

recovery assumptions 
Protein 72%  
Fat (FAME) 10%  
Carbohydrates and other compounds 16%  
Ash 1.3%  
Moisture, wt % 3.5  

After filtration, acid is added to the protein extract stream to reach a pH of 4 for protein 
precipitation at the isoelectric point (Parimi et al. 2015). The precipitated protein solids are then 
filtered from the solution. The filtrate containing non-precipitated proteins, carbohydrates, lipids, 
and other soluble components is assumed to be recycled to the algae cultivation farm as a 
nutrient source. Membrane filtration testing conducted by Gifuni et al. (2020) demonstrated that 
about 50% to 60% of algae carbohydrates, mainly polysaccharides, are retained together with 
proteins. Therefore, for the acid precipitation and filtration step, about 50% of carbohydrates and 
other components in the protein extract stream are assumed to be co-precipitated with the protein 
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solids. A similar percentage is assumed for the lipids (FAME) based on Parimi et al. (2015). The 
separated protein solids are then sent to a spray dryer to produce the final protein product 
powder.  

The major design assumptions for HTL and biocrude upgrading are listed in Table 2.2.7. The 
design and evaluation of these processes are based on previous work (Zhu et al. 2021; Jiang et al. 
2019) and current testing work by PNNL. The HTL product yields for PEA are predicted based 
on PEA feedstock composition and the correlation equation developed by Jiang et al. (2019). 
PEA has less protein and more carbohydrates, which leads to higher biocrude yield than 
untreated algae on a gram/gram feedstock basis. Upgrading experiments have been conducted at 
PNNL to investigate the hydrotreatment of HTL biocrude from algae biomass and the production 
and distillation of jet fuel products, and the JFC distribution reaches 22% of the hydrotreated oil 
based on the distillation range (Zhu et al. 2023). The design of hydrotreating and hydrocracking 
processes are based on current hydrotreating experiments and previous TEA work (Zhu et al. 
2021, 2023). Protein extraction pretreatment leads to lower nitrogen content in the biocrude and 
thus lower hydrogen consumption and high hydrotreated oil yields based on solids sent to HTL 
compared to those of the fuel production only pathway. For this study, to maximize the 
production of jet fuel, both diesel and heavy oil cuts are assumed to be sent to the hydrocracking 
process to further convert these oils into naphtha and JFC products. This is different from 
previous algae HTL biocrude upgrading, which sends only the heavy cut (boiling point >340°C) 
to the hydrocracking unit. Based on this design, the optimal JFC distribution in final fuels can 
reach 60% to 65%, and the remaining products are diesel- and naphtha-range fuels. This JFC 
yield estimation is based on current hydrotreating testing results and optimal hydrocracking 
product yields predicted by expert judgement. Because no upgrading tests have been conducted 
for the HTL biocrude from PEA, the hydrogen consumption and hydrotreating yield for PEA 
HTL biocrude are assumed based on previous testing results for whole algae HTL. Bench 
experiments to upgrade HTL biocrude from PEA should be considered in the future to validate 
the assumptions for hydroprocessing yields. It is anticipated that the HTL biocrude will have a 
reduced nitrogen content, resulting in a lower hydrogen demand to remove nitrogen and other 
heteroatoms during hydrotreatment (Cronin et al. 2022). 
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Table 2.2.7. Major Design Assumptions for PEA and Whole Algae HTL Conversion and Upgrading 
Processes 

Processes Fuel and Protein Production Fuel Production Only 
HTL conversion   
Feedstock solid wt %, AFDW 20 (PEA) 20 (algae) 
Temperature, °C 350 350 
Pressure, psia 3,000 3,000 
Liquid hourly space velocity 
(LHSV), L/L/h 

4 4 

Product yields, g/g PEA feed, 
AFDW 

  

Biocrude 0.41 0.39 
Aqueous 0.31 0.39 
Gas 0.25 0.19 
Solid 0.03 0.03 

Upgrading   
Hydrotreating   

Temperature, °C (outlet) 400 (main bed); 325 (guard bed) 400 (main bed); 325 (guard bed) 
Pressure, psia (outlet) 1,500 1,500 
Weight hourly space velocity, 
h−1 

0.5 (main bed); 0.72 (guard bed) 0.5 (main bed); 0.72 (guard bed) 

H2 consumption, g/g dry feed 0.057 0.071 
Hydrotreated oil yields, g/g dry 
feed 

0.88 0.83 

Hydrocracking   
Temperature, °C (inlet) 390 390 
Pressure, psia (inlet) 1,000 1,000 
LHSV, h−1 1 1 

Hydrodenitrogenation of jet fuel 
cut 

  

Temperature, °C (outlet) 400 400 
Pressure, psia (outlet) 1,500 1,500 
LHSV, h−1 0.5 0.5 
Nitrogen removal, % of inlet 
nitrogen 

99 99 

Final fuels distribution, wt %   
Naphtha 23% 23% 
SAF 60% 60% 
Diesel 17% 17% 

Based on current testing results of the algae HTL biocrude hydrotreating at PNNL, the nitrogen 
levels in the JFC (about 5,000 ppm) from the hydrotreated oil are significantly higher than 
conventional petroleum-based jet fuel. Although the impact of elevated nitrogen levels of jet fuel 
on engine/fuel performance has yet to be established, an HDN step is still assumed to remove 
most of the nitrogen in the JFC from the hydrotreated oil. Penner et al. (1999) mention that jet 
fuels contain only trace amounts of fuel-bound nitrogen and that higher levels can cause storage 
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stability problems and render the fuel unfit for use. A report by Chevron (Hemighaus et al. 2007) 
also mentioned that nitrogen in the petroleum-based fuel is neither controlled nor typically 
measured but can range from near zero to 20 ppm. To achieve a comparable nitrogen content as 
petroleum-based jet fuel, an initial HDN testing has been done at PNNL and demonstrated a 99% 
nitrogen removal efficiency (53 ppm after HDN processing) for the JFC from the wet sludge 
HTL biocrude hydrotreating (Snowden-Swan et al. 2022). Therefore, with HDN, the SAF 
generated from biomass HTL and upgrading has a nitrogen content of similar magnitude as 
petroleum-based jet fuel. The same HDN testing conditions and nitrogen removal efficiency are 
assumed in this study considering the compositional similarity of the hydrotreated biocrude from 
algae and wet sludge. The JFC after the HDN processing is assumed to constitute the final SAF 
product. Although the SAF product still has slightly higher nitrogen content than conventional jet 
fuel, SAF is generally used for blending with conventional jet fuel up to 50%, which will lead to 
a lower nitrogen content for the finished fuel blend. Future work can test the fuel storage stability 
and engine/fuel performance for jet fuel with different blending ratios of SAF from algae 
biomass to decide optimal nitrogen removal needs. 

The capital cost estimation for the algae HTL conversion system is based on previous TEA 
studies for algae HTL (Zhu et al. 2020, 2021), with standard equipment costs sourced from 
Aspen Process Economic Analyzer (Al-Malah 2016) and special equipment costs for HPH and 
solid-liquid filtration based on prior NREL TEA studies. Variable operating costs are based on 
unit prices from industrial sources and previous work. The SAF is assumed to be sold together 
with naphtha and diesel cuts as the final fuel blendstock product. The yield of the final fuel 
product, including naphtha, SAF, and diesel cuts for each site group, is estimated on the basis of 
gasoline gallons equivalent (GGE), equal to the energy content of one gallon of gasoline on a 
lower heating value basis. The final fuel production cost was calculated as the MFSP by using a 
discounted cash flow rate of return calculation method in dollars per GGE. The methodology is 
identical to that used in previous TEA studies (Davis et al. 2018; Zhu et al. 2020).  

For LCA modeling, the LCI of the HTL process includes material and energy consumption 
associated with fuel and PC coproduction, and the LCIs of HTL are consistent across all sites. 
LCI details can be found in Table 2.2.8. Considerations for coproduct handling methods are 
discussed below.  
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Table 2.2.8 Material and Energy Consumption Associated With the HTL Pathway 

  Fuel + PC Without Market Limit Fuel Only 

Inputs   
Algae biomass (kg AFDW/MJ) 0.142 0.0764 

Energy inputs   

Electricity demand (kWh/MJ) 0.0923 0.00596 

Natural gas (utility) (MJ/MJ) 0.204 0.131 

Natural gas (H2 production) (MJ/MJ) 0.146 0.207 

Chemical and water demand   

Sulfuric acid (kg/MJ) 0.0014 0.0021 

Hydrotreating catalyst (HTL) (kg/MJ) 1.71E-05 1.83E-05 

Hydrocracking catalyst (HTL) (kg/MJ) 3E-07 2.99E-07 

Membrane flocculant (kg/MJ) 0.0016 0 

NaOH (kg/MJ) 5.47E-05 2.31E-05 

Water (process demands) (gal/MJ) 0.0356 0.0169 

HCl (kg/MJ) 1.06E-05 0 

Output   

Renewable diesel (MJ/MJ) 0.174 0.175 

Naphtha (MJ/MJ) 0.223 0.226 

SAF (MJ/MJ) 0.603 0.6 

Protein coproduct 0.0495 0 

Coproduct Handling in TEA and LCA Models 
For TEA modeling, scenarios including algal PC coproduction assume that the protein coproduct 
is sold at market value, reducing fuel costs through the inclusion of coproduct revenues. Based 
on the process simulation, the purity of the final protein product is estimated to be 72 wt %. As 
shown in Table 2.2.9, this purity is comparable with currently marketed protein food products, 
including soy, pea, and whey PC. Therefore, the final protein product of the conversion system 
in this study is assumed to be sold as algae PC for human or animal consumption. Specifying the 
price of the algae PC product is challenging because the current market only includes whole 
microalgae for food/feed applications (Caporgno and Mathys 2018). Microalgae-based protein 
extract has only been tested for protein digestibility and toxicity and is not commercially 
available (Wang, Tibbetts, and McGinn 2021; Soto-Sierra, Stoykova, and Nikolov 2018). To 
specify the PC product price for this study, a summary of major PC products in the current 
protein market is collected to compare to the algae PC product, as listed in Table 2.2.9. The 
digestibility of whole microalgae ranges from 0.51 to 0.90 depending on the strain. For 
concentrated protein products, such as protein hydrolysate, the digestibility ranges from 0.9 to 
0.97 (Wang, Tibbetts, and McGinn 2021; Soto-Sierra, Stoykova, and Nikolov 2018). Algae PC 
product has slightly lower protein content than protein hydrolysate (70 to more than 80 wt %), 
but much higher than whole cell algae (40 to 60 wt %). Therefore, the digestibility of algae PC 
product should be higher than pea PC when algae PC has higher protein content. Because algae 
PC is plant-based and the PC product of this study has similar protein content as the soy and pea 
PC, the selling price of the algae PC product in this study is assumed to be the average of the 
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selling prices of the two PCs, which is $1.0/lb. This price is higher than soy PC but much lower 
than pea and whey PC products (while noting that using saline microalgae avoids land and food 
conflicts associated with traditional food crops for protein generation, such as soy and pea).  

Table 2.2.9 Protein Content, Digestibility, and Price of Different PC Products 

Protein Products Soy PC Pea PC Whey PC 34% 
Whey 

PC 80% Algae PC 
Protein content, wt % 65 65 34 80 72 (this study) 

Protein digestibility  0.96 0.72 1 1 
Whole cell: 0.51–0.84; 

Protein hydrolysate: 0.9–0.97 

Price, $/lb product $0.59 $1.47 
$0.9375 (2020 

average) $2.21 a 
$1.0 (average of soy and pea 

PC prices) 

Price, $/lb protein $0.91 $2.27 $2.76 b $2.76 
$1.59 (average of soy and 

pea protein prices) 

Source Bashi et al. (2019) USDA (2021) 
Wang, Tibbetts, and McGinn 

(2021); Soto-Sierra, 
Stoykova, and Nikolov (2018) 

a Estimated based on whey protein price and whey PC 80% protein content. 
b Estimated based on whey PC 34% product price and its protein content. 

For LCA modeling, the extracted PC can be used to replace high-protein products, such as whey 
PC and soybean PC. In this study, four coproduct handling methods have been employed: 
process-level mass allocation, process-level economic value allocation, system expansion 
(displacement), and an overall biorefinery-level method. Specifically, with process-level 
allocation, processes associated with both fuel and PC are allocated based on feedstock mass or 
economic values of products. Processes linked solely to fuel production or PC production are 
allocated accordingly. For simplicity in subsequent discussion, we use “mass allocation” and 
“economic value allocation” as abbreviations to represent the names of “process-level mass 
allocation” and “economic value allocation,” respectively. According to ISO 14044 guidelines, 
allocation should be avoided in LCA whenever possible. This can be achieved by (1) subdividing 
multifunctional processes into two or more sub-processes and collecting input and output data 
for each sub-process, or (2) expanding the production system to encompass the additional 
functions related to coproducts. Additionally, when dealing with biofuel coproducts in 
transportation LCA models, the system expansion (displacement) method is recommended, 
particularly when the shares of non-fuel products are limited (Cai et al. 2018). However, liquid 
whey is the main feedstock for whey PC and a coproduct from cheese production. Due to 
uncertainties related to LCA credits for coproducts, we have chosen to use mass allocation as the 
default method in this report. Further discussion on the displacement of whey PC and soy PC and 
biorefinery-level analysis are also considered, with the aim of providing a foundation for future 
research on algae-based protein products. 

Factors To Consider With the Introduction of Microalgae-Based Protein Products 
to the Market 
Microalgae proteins have potential to replace whey PC or soy PC, but they may need to be 
further processed for flavor. Solubility, emulsification, gelation, and foaming are 
physicochemical properties of protein that directly impact the preparation, processing, storage, 
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and consumption of food. It has been found that microalgae proteins have comparable 
emulsifying and foaming properties with whey and soy proteins (Grossman, Hinrichs, and Weiss 
2020). However, there is ongoing debate regarding the suitability of algae PC as a replacement 
for whey PC and meat, primarily due to flavor considerations and trends toward less processed 
food. In addition, there are many other factors that influence the replacement, such as increasing 
demand, current production and trade conditions of existing products and alternatives, and 
economic benefits associated with increasing protein demand. 

Soy PC, extracted from soybeans, is used to represent the protein ingredient market. The LCI of 
soybean (13% water) farming, harvesting, and transportation to a soy PC production plant was 
obtained from the GREET model. The LCI of soy PC extraction from soybean (13% water) was 
obtained from Philis et al. (2018), and the LCI data were allocated based on mass or price as 
shown in Table S26. The protein content for soy PC is 62% according to literature (Philis et al. 
2018), and it is assumed that the algae-based protein coproduct with protein content of 
approximately 75% can be used to replace it with three replacement metrics: mass, protein 
content, and digestible protein. The replacement ratio calculation is provided below, and the 
calculated replacement ratio for soybean PC can be found in Table 2.2.10. 

Calculation of the replacement ratio (RR) by using protein content and digestible protein 
as the matching functional units: 

RR(PC)i = WPC/WPi (Eq. 3) 

RR(DP)i = (PDC × WPC)/(PDi × WPi) (Eq. 4) 

RR(PC)i = Replacement ratio of replacing i with microalgae PC coproduct by using 
protein content. 
WPC = Weight percentage of protein in microalgae PC coproduct. 
WPi = Weight percentage of protein in i (whey PC, soybean PC, soybean meal, or alfalfa 
meal). 
RR(DP)i = Replacement ratio of replacing i (whey PC, soybean PC, soybean meal, or 
alfalfa meal) with coproduct by using digestible protein. 
PDC = Protein digestibility of microalgae PC coproduct. 
PDi = Protein digestibility of i (whey PC, soybean PC, soybean meal, or alfalfa meal). 

Table 2.2.10 Replacement Ratios Based on Protein Content and Digestible Protein 

Parameter 
Displacement Coproduct From 

This Study 
Whey PC Soybean 

PC Soybean meal Alfalfa 
meal Microalgae PC 

Protein content 60% 62% 49% 17% 72% 
Protein digestibility 100% 95–98% 82%–87% 80%–99% 55%–80% 
Average replacement ratio 
by using protein content 125% 121% 142% 136%  

Average replacement ratio 
by using digestible protein  ~80% ~80% 113% 319%  

References Qin et al. 
(2022) 

Qin et al. 
(2022) 

Ravindran, 
Abdollahi, and 

Bootwalla (2014) 

Sheehan 
et al. 

(1998) 

Devi et al. (1981) 
and Niccolai et al. 

(2019) 
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Commercial whey PC is derived from liquid whey through a series of processes involving 
ultrafiltration, evaporation, and drying (USDA 2015). From an LCA perspective, the 
displacement of whey PC presents a complex scenario. Liquid whey serves as a coproduct of 
cheese production, and the displacement of whey PC would not necessarily affect the production 
of liquid whey from cheese manufacturing. Given the projected growth in the cheese market, it is 
improbable that liquid whey will become obsolete. The displacement of liquid whey by 
microalgae PC may only become justifiable when liquid whey cannot meet the demand for whey 
PC. However, predicting the whey PC market is challenging due to multiple factors, including 
flavor acceptance, consumer preference for less processed foods, trade conditions, and more. 
Nevertheless, in this analysis, various coproduct calculation methods have been examined for 
liquid whey in order to offer a quantitative measure of environmental credits attributed to whey 
PC. The LCIs of whey PC and liquid whey and detailed allocation associated with cheese and 
liquid whey were obtained from literature (Bacenetti et al. 2018; Kim et al. 2013; Aguirre-
Villegas et al. 2012), and detailed information can be found in the appendix. The replacement 
ratio for whey PC can be also found in Table 2.2.10. 

2.3 Modeling of National Totals From Site-Specific Biomass Potential, 
Costs, and Greenhouse Gas Emissions 

Multicriteria Land Screening 
A nationally consistent geospatial resource database and modeling framework was redeveloped 
as a means to evaluate multicriteria spatial suitability, integrate numerical modeling, perform 
partial techno-economic modeling (primarily upstream and downstream of the farm gate, 
including CO2 and makeup water delivery as well as saline blowdown disposal), and ultimately 
determine ideal locations for microalgae cultivation under a variety of scenarios and assumptions 
using the most recent available data (see Table 2.3.1). The land suitability model includes 
CONUS, Hawaii, and the U.S. territories, but this assessment is constrained to CONUS to 
maintain consistency with past model harmonization efforts (excluding international locations in 
keeping with the support for this study from DOE). The multicriteria land suitability model 
initially screens based on topography, particularly slopes <3%, then further considers protected 
lands such as state and national parks; environmentally sensitive lands such as forests, wetlands, 
and riparian areas; areas of high net primary productivity (kg C/m2); and other lands deemed 
sensitive according to the 2021 World Database on Protected Areas. Further, high-productivity 
croplands, roadways, airports, and areas within urban area boundaries are removed from 
consideration; however low-productivity croplands, idle croplands, and pasturelands are retained, 
as are brownfield locations, even if they exist within an urban area boundary.  

The model assumes a 1,000-acre minimum contiguous land area and does not enforce a 
maximum area threshold. For translation of these land screenings to the algae farm TEA model, 
this implies the selection of a stand-alone unit algae farm at least 1,000 acres in size based on 
production pond area. With no maximum area threshold, the unit algae farms were allowed to 
vary in size beyond 1,000 acres to match the suitable land area and locally available CO2 and 
water reflected from the BAT model. Without further resource constraints, this analysis yielded 
24,583 independent unit algae farms across the CONUS. These are further downselected as 
described next. 
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Table 2.3.1. Dataset Descriptions for the Multicriteria Land Screening for Determining Potential 
Algal Production Farms 

Dataset Year Resolution 
(m) 

Description and Processing Source 

Digital 
Elevation 
Model 
(National 
Elevation 
Dataset) 

2021 10 Elevation data used to derive weighted slope 
dataset, where ≤1% slope is suitable (1), 
1%–3% slope is weighted linearly, and ≥3% 
slope is not suitable (0). Digital Elevation 
Models were downloaded from The National 
Map.  

U.S. Geological 
Survey 

National 
Hydrography 
Dataset 

2021 1:24,000 or 
better 

Hydrography features, including rivers, 
streams, canals, lakes, ponds, and other 
open water. The database includes four 
datasets: areas, waterbodies, flowlines, and 
lines. The features are elevation-derived, and 
it is the most complete hydrological dataset 
for the United States, according to the U.S. 
Geological Survey.  

U.S. Geological 
Survey 

National 
Land Cover 
Database 

2019 30 Standardized land cover with 25 categories 
over the CONUS. Open water; perennial 
ice/snow; developed (open space; low, 
medium, and high intensity), deciduous, 
evergreen, and mixed forest; lichens; moss; 
and woody and emergent herbaceous 
wetlands are not suitable. Barren land, dwarf 
shrub, shrub/scrub, grassland/herbaceous, 
sedge/herbaceous, pasture/hay, and 
cultivated crops are suitable.  

Multi-Resolution 
Land 
Characteristics 
Consortium 

Coastal 
Change 
Analysis 
Program 
Land Cover 

2009–
2016 

1–5 Standardized land cover with 24 categories 
over coastal regions of the United States, 
including islands and territories. 
Classification deviates slightly from the 
National Land Cover Database. Developed 
(open space; low, medium, and high 
intensity), deciduous, evergreen, and mixed 
forest; scrub/shrub; palustrine (forested, 
scrub/shrub, emergent) wetland; estuarine 
(forested, scrub/shrub, emergent); wetland; 
unconsolidated shore; water; palustrine and 
estuarine aquatic bed; tundra; and snow/ice 
are not suitable. Cultivated, pasture/hay, 
grassland, scrub/shrub, and bare land are 
suitable.  

National 
Oceanic and 
Atmospheric 
Administration 

Cropland 
Data Layer 

2020, 
2019, 
2018 

30 Standardized land cover dataset including a 
wide variety of crops and general land cover 
classes over the CONUS. All crops, 
background, non-agricultural/undefined, 
barren, shrubland, and grass/pasture are 
suitable. Forest, developed, water, wetlands, 
aquaculture, open water, perennial ice/snow, 
developed (open space; low, medium, and 
high intensity), deciduous, evergreen, mixed 
forest, and woody and herbaceous wetlands 
are suitable. A long-term (3-year) idle 
cropland dataset was produced by isolating 

USDA 
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Dataset Year Resolution 
(m) 

Description and Processing Source 

the fallow/idle class to a binary raster for 
each of the 2020, 2019, and 2018 datasets, 
then multiplying the rasters. The long-term 
idle cropland data are used to locate low-
productivity croplands that may be ideal for 
siting an algal production facility. 

National 
Wetlands 
Inventory 

2021 1:24,000 or 
better 

Feature dataset that covers all wetlands and 
surface water features on the landscape. 
Wetland areas are converted to a binary 
raster and marked as unsuitable. 

U.S. Fish & 
Wildlife Service 

Urban Area 
Boundaries 

2020 n/a In accordance with new rules in the 2020 
Census, any block group with a housing unit 
density of at least 385 per square mile, 
where at least one-third of the block has an 
imperviousness of at least 20% and the area 
is compact in nature. Additionally, at least 
40% of its boundary is contiguous with 
qualifying territory. Urban areas are marked 
as unsuitable. 

U.S. Census 

TIGER/Line 
Roads 

2020 n/a TIGER/Line all roads file containing all linear 
street features, such as primary, secondary, 
local, private, and rural roads; city streets; 
vehicular trails; ramps; service drives; 
walkways; stairways; and alleys. Roadways 
are an essential piece of infrastructure for an 
algal production farm, and existing roadways 
may reduce upfront cost for a new facility. 
Road features are considered following the 
land screening. 

U.S. Census 

Aeroways 2021 n/a An open crowdsourced dataset containing 
polygon features for any infrastructure 
related to aviation and spaceflight. This 
includes runways, terminals, heliports, 
spaceports, parking lots, and more. 
Aeroways are not fully screened out as 
unsuitable, as there is potential to utilize part 
of the open areas typically associated with 
airports. A dataset was produced to indicate 
the presence of aeroway built infrastructure. 

OpenStreetMap 
contributors 

World 
Database on 
Protected 
Areas 

2021 n/a A worldwide database containing protected 
areas, with emphasis on conservation. In an 
effort to preserve valuable habitat, all 
protected areas are marked unsuitable.  

Protected Planet 
Initiative 

Protected 
Areas 
Database of 
the United 
States 

2021 n/a All areas in the United States that are held in 
public trust. The dataset is considered 
functionally complete, though the estimated 
completion varies by state. These lands are 
marked as unsuitable. 

U.S. Geological 
Survey 

Military 
Installations, 
Ranges, and 
Training 
Areas 

2021 n/a Feature dataset containing major 
installations, ranges, and training areas in 
the United States and its territories. Similar to 
aeroways, there is potential to utilize part of 

U.S. Department 
of Defense 
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Dataset Year Resolution 
(m) 

Description and Processing Source 

the land on military installations; thus, not all 
areas are screened as unsuitable. 

Brownfields 2021 n/a Point feature dataset containing the location 
of brownfield sites in the United States. 
Brownfields are ideal for algal production 
facilities, as they are typically idle land that is 
open to development. The sites are 
considered after the land screening analysis. 

U.S. 
Environmental 
Protection 
Agency 

Net Primary 
Productivity 

2018 960 Net primary productivity (NPP) derived from 
the Integrated Biosphere Simulator (IBIS) 
model in kg C/m2. Data span 1971–2015, 
and the period of 1985–2015 was averaged 
for this analysis. NPP is considered, 
especially in grassland areas, to avoid 
removing grasslands that are effective in 
capturing and storing carbon. 

U.S. Geological 
Survey 

Downselection of Algae Farm Sites 
The BAT model is used to provide locations, biomass production potential, and pertinent cost 
factors (CAPEX and energy for groundwater and brine injection wells, and CAPEX and energy 
for FO blowdown processing) used in the TEA and LCA tasks. This includes the following: 

1. A CONUS-wide multicriteria land suitability analysis to identify potential land areas for 
algae cultivation (see Section 2.3: Multicriteria Land Screening).  

2. Identification of saline groundwater resources that could reasonably support saline water 
pond operations at 55,000-mg/L concentrations. This focused on CONUS-wide saline 
groundwater resources at total dissolved solids of ≥2,000 and ≤40,000 mg/L retrievable at 
≤500-m depth. 

3. An hourly time-step pond temperature and water balance model run from 1979 to 2019 
(40 years) to simulate water temperature, evaporative loss, and blowdown volumes. The 
pond model uses the North American Land Data Assimilation System Phase 2 1/8° 
gridded hourly time-step meteorology. 

4. An hourly time-step biomass growth model run from 1979 to 2019 for the two identified 
saline strains (Picochlorum celery and Tetraselmis striata) along with a monthly 
maximum productivity model (i.e., strain rotation). The growth rate of microalgae is 
modeled as a function of light intensity and temperature under nutrient-replete conditions 
and diurnally fluctuating light intensities and water temperatures. 

5. A point-source location-allocation spatial network model simulates the capture, 
compression to supercritical fluid, and pipeline transport of waste CO2 to individual sites’ 
farm gates. As in the 2017 harmonization study, we consider the location and carbon 
demand of individual farm sites in combination with the location and supply of waste 
CO2 supplies. Further considering the industrial process generating the CO2 (and 
subsequent CO2 concentrations), the most cost-effective sources of CO2 are supplied to a 
given farm first, followed by additional sources as required to fulfill the needs of a 
cultivation site (Davis et al. 2018). Additionally, multiple CO2 sources can meet the 
carbon demand of a given site, or a single CO2 source may feed multiple farm sites. 
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6. Salinity management of the cultivation pond by modeling evaporative water loss and 
subsequent salinity levels, and processing the resulting water through FO once the 
55,000-mg/L pond salinity threshold is achieved. The FO freshwater fraction is recycled 
for use within the algae farm, and the brine water fraction is disposed of through deep-
well injection. 

When subsequently applying minimum groundwater salinity constraints of ≥2,000 and ≤40,000 
mg/L at depths <500 m (Figure 2.3.1) in addition to ≥25-g/m2/day productivity thresholds, this 
yields a total of 3,255 sites focused across the U.S. Southern-tier states. For this analysis, 
potential cultivation sites are further constrained by the availability of nearby, non-committed 
waste point-source CO2 that can be captured and transported to the site for ≤$75 tonne 
(≤$83/ton), bringing the total down to 1,199 sites. Further eliminating a set of unique outlier 
cases in the TEA process, the sites were further downselected to a final total of 980 sites (Figure 
2.3.2). For reporting purposes and to organize the results where practical, the individual sites are 
categorized regionally by “Western” (California and Arizona), “South-Central” (Texas and 
Louisiana), and “Southeast” (Florida and Georgia) regions. 

 
Figure 2.3.1. Groundwater salinity (mg/L) at 24,583 CONUS-wide land-screened sites constrained 

to ≥2,000 and ≤40,000 mg/L and depths ≤500 m 
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Figure 2.3.2. Final 980 land-screened sites meeting the 25-g/m2/day AFDW threshold, saline 

groundwater constraints, and ≤$75/tonne (≤$83/ton) CO2 collocation requirement 

To help characterize the regional differences in productivity (g/m2/day), annual total biomass 
production (MM tons/yr), and CO2 pipeline transport distance (miles), sets of histograms are 
presented in Figures 2.3.3–2.3.5, respectively, for each region. A histogram of long-term average 
biomass productivity among the land-screened sites for each of the three regions is provided in 
Figure 2.3.3. Table 3.1.1 provides a summary of biomass productivity, cultivation area, and total 
biomass output for each region, as well as a total for CONUS.  

With regard to unit biomass productivity, the Southeastern region shows the highest levels of 
productivity, with the vast majority of total sites (n = 137) performing at 30 g/m2/day or greater. 
Out of the three regions, the Southeast has the fewest number of individual farm sites. The 
South-Central region has the largest number of sites (n = 675) by more than a factor of 3 
compared to the other two regions. This region exhibits biomass productivity in the 26–27-
g/m2/day range and is the second-highest-performing region with regard to productivity. The 
Western region has the second highest number of sites (n = 168), with biomass productivity 
dominantly ranging in the 25–27-g/m2/day range. 

The total annual biomass production (MM tons/yr) reflects a combination of unit biomass 
productivity, total available land area for cultivation, and economically collocated CO2 sources. 
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Among the three regions, the South-Central region provides a significantly greater amount of 
land area for cultivation (2,903,983 acres) than the other two regions, by more than a factor of 5. 
Accordingly, the South-Central region dominates in the total annual biomass output at 124.1 
MM tons/yr. The Western region produces the second largest amount of annual biomass at 21.7 
MM tons/yr on 521,395 acres, followed by the Southeastern region with 21.6 MM tons/yr on 
434,091 acres. Among the three regions, the majority of individual sites within each region 
produce between 33,068 and 110,226 tons/yr. 

The availability and supply of waste CO2 is another key factor in the siting of cultivation farms. 
Without the availability of external CO2, a cultivation site is not considered in this analysis, 
largely due to significantly reduced productivity without the sparged CO2. Figure 2.3.6 shows the 
CO2 point source locations used in this study and categorized across eight different sectors, 
including electricity generation, refinery and chemical production operations, petroleum and 
natural gas processing, cement production, fertilizer production, industrial applications, 
agricultural processing, and ethanol production. Further, the annual CO2 mass availability 
applied in this study by sector and region of the collocated point-sources is presented in Figure 
2.3.7, highlighting the electricity generation sector as by far the largest contributor, followed by 
refineries and chemical production. Each of these CO2 sources is linked to one or many land 
screened algae cultivation sites based on carbon availability and carbon demand at the individual 
farm, as a function of biomass productivity and total production area. The sourcing and transport 
of CO2 to an algal cultivation farm can have a considerable impact on overall production costs. 
Thus, in general, the shorter the pipeline transport distance, the more economical the availability 
of CO2. However, with larger individual sources of CO2, it can be advantageous to source a 
single site and capture and transport this across a longer distance as opposed to capturing and 
transporting from several smaller sources that may be closer in proximity. Recall that for this 
study, a $75/tonne ($83/ton) delivered CO2 cost cap was placed to help keep the supplemental 
carbon costs manageable. Figure 2.3.5 is telling in that for all three regions, the majority of the 
pipeline distances fall in the 1–30 mile range, where the South-Central region has the most 
required pipelines, with a distance average of 24 miles and a total non-optimized pipeline 
network of 16,308 miles. These numbers are also reflective of the region’s large availability of 
waste CO2 sources. In comparison, the Western region’s average pipeline distance is 28 miles, 
comprising a total network of 4,677 miles, and for the Southeastern region, the average pipeline 
distance is 18 miles with a total network of 2,463 miles. 
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Figure 2.3.3. Histograms of long-term average biomass productivity (g/m2/day) for sites within 

each of the three regions (Western, South-Central, and Southeastern) 
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Figure 2.3.4. Histograms of the long-term total annual biomass production (tons/yr) per region. 

These plots reflect a combination of biomass productivity and available cultivation area. 
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Figure 2.3.5. Histograms of CO2 transport distance (miles) by region 
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Figure 2.3.6. CO2 point-source locations separated by production sector used for microalgae 
cultivation at captured and farm gate delivered price of ≤$75/tonne (≤$83/ton). The eight sectors 
included are ordered from A-H according to total CO2 availability, with the electricity generation 

sector and ethanol sector representing the largest and smallest contributors respectively. 

 

Figure 2.3.7. CO2 point-source mass availability, broken out by production sector and region, as 
applied in this study for capture and transport to algae farms. 

Direct Land Use Change (DLUC) 
Direct land use emissions were also estimated through original land use data provided by PNNL 
and a location-based land use change (LUC) emissions factor (Eggleston et al. 2006; Quiroz et 
al. 2023). The net primary productivity data obtained from the Integrated Biosphere Simulator 
(IBIS) model in kg C/m2 helped avoid areas with high carbon stocks and fluxes (Liu and Sleeter 
2018). The LUC calculation specifically accounts for the carbon loss occurring in the landscape 
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due to the removal of aboveground and belowground biomass (Handler, Shi, and Shonnard  
2017). Carbon emissions from LUC were calculated based on Equation 5. Detailed carbon 
emissions results from different sites can be found in Figure S4. Due to large uncertainties, the 
carbon emissions from DLUC were not included in overall GHG emissions, but rather are 
discussed separately in the Appendix.  

LUC = EFLUC × Facility Size × EA / LT / FPAnnual      (Eq. 5) 
LUC – Annual land use change emissions per unit of fuel (g CO2-eq./MJ of fuel) 
EFLUC – Land use change emissions factor (g CO2/ha) 
Facility Size – (ha) 
EA – Energy allocation (%). For fuel only case: EA = 100% 
LT – plant lifetime (years). LT of microalgae plant = 30 years. 
FPAnnual – Annual fuel production (MJ/year) 

Simulation of Algae Cultivation Costs Across Identified Sites 
The algae farm TEA model was run for 980 individual locations spanning the full collection of 
sites depicted in Figure 2.3.2. This number of individual sites was reached after a downselection 
from all sites screened with the BAT model with the application of two filters: (1) discarding all 
cases with salinity of the makeup water above 40,000 mg/L and (2) removing all points with an 
estimated MBSP exceeding $1,000/ton AFDW. The analysis leveraged several parameters  
directly supplied by the BAT model, such as monthly productivities, farm size, evaporation rates, 
salinity of the input water, and delivered CO2 costs. The water balance was then calculated using 
the NREL algae farm model as discussed above, thus determining the amount of saline water 
needed, the blowdown requirements, and brine production in the FO unit. This made use of 
associated BAT outputs for makeup water well CAPEX and pumping power, as well as 
CAPEX/power demands for the blowdown handling FO membrane and injection well, as those 
parameters are all dependent on the water balance of the facility and can be scaled from original 
BAT values by throughput. As noted above, a new feature in the present harmonization study 
relative to past studies is that the individual farm size was allowed to fluctuate to match the total 
available size dictated by BAT outputs (typically driven by local CO2 availability). While this 
incurs an additional economy-of-scale difference between sites compared to the 2017 
harmonization that assumed a fixed 5,000-acre farm size, it reflects the practical approach that 
would be taken at scale—i.e., building a single farm connected to a single conversion facility 
scaled to utilize all available CO2 at that location, rather than multiple collocated 
farm/conversion facilities in close proximity. The resulting farm scales range between 1,000 and 
38,500 acres based on production pond area, with an average size of 3,940 acres (the majority of 
sites fall between 1,000 and 5,000 acres). 

Market Considerations for Protein Coproducts 
Based on the high protein content of the algae PC product in this study, the primary potential 
market for this protein product is the protein ingredients market for food and feed supplement 
applications as listed in Table 2.3.2. This market mainly includes soy protein (plant-based) and 
whey protein (animal-based), which have comparable protein contents as the algae PC product of 
this study (see Table 2.2.9). The global market size of animal-based protein ingredients, which is 
mainly whey protein, is estimated based on the U.S. whey PC production rate and its market 
share in the global market (USDA 2022a; Grand View Research 2022a). Other potential markets 
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for algae protein products include animal meat, pet food, and animal feed. Some research has 
been conducted to substitute a portion of plant materials with microalgae or microalgae PC to 
produce meat analogues via extrusion (Caporgno et al. 2020; Martínez-Sanz et al. 2020; Fu et al. 
2021). The assumed selling price of the algae protein product in this study is not competitive 
compared to lower-value products such as soy PC and the major animal feed, soybean meals, 
which are $0.59/lb (see Table 2.2.9) and about $0.20/lb, respectively (USDA 2022b). However, 
using microalgae does not incur competition for land against other food sources and can yield 
higher protein per unit area compared to soybean for protein production, which may make it a 
more attractive protein source considering near-term potential for farmland degradation 
(Bleakley and Hayes 2017; Koyande et al. 2019). 

Table 2.3.2. Potential Global Market Sizes for Algae Protein Product With Different Application 
Targets 

Market 

2021 Global 
Market (million 

tons/yr) 

2030 Forecast 
Global Market 

(million tons/yr) 

Protein 
Content,  

wt % Source 
Protein ingredients (plant- 
and animal-based)  

6.6 14 65 to over 90 Grand View Research 
(2022b); Bashi et al. (2019) 

Whey protein 1.4 3.9 34 to over 80 Grand View Research 
(2022a); USDA (2022a) 

Meat 125 (pork) 
77 (beef) 

n/a 21 (pork and 
beef) 

Statista (2022); González, 
Frostell, and Carlsson-
Kanyama (2011) 

Pet food 37 n/a 17 to 58 (dry 
food) 

Tyler (2022); Decision 
Innovation Solutions (2020) 

Aquafeed 57 n/a 25 to 72 Glencross (2022); Miles and 
Chapman (2021) 

Animal feed 1,370 n/a 46.5 to 48 
(soybean meal) 

Tyler (2022); USDA (2022b) 

When algae HTL conversion with inclusion of protein extraction is employed for all sites, the 
total algae PC production rate is estimated at 51 million tons/yr, which exceeds the whey protein 
and total protein ingredients market sizes. Under this context, only a portion of the cultivation 
site groups could use their algae products for protein production, subject to the related protein 
market volume constraints with respect to saturating the markets. With the protein market 
saturated, algae biomass from the remaining sites is thus subsequently used for fuel production 
only. Alternatively, for a fuel production only pathway, whole algae without protein extraction 
was assumed to be converted to fuels via direct processing through HTL conversion and 
upgrading. Whole algae HTL conversion technology has been tested and evaluated by PNNL 
(Jiang et al. 2019; Zhu et al. 2021, 2023). The HTL product yields for whole algae without 
protein extraction are estimated based on the biochemical compositions (see Table 2.2.7) and the 
correlation equation developed by Jiang et al. (2019). The hydrotreating process of whole algae 
HTL biocrude is designed based on a 2022 published study for Picochlorum celeri HTL biocrude 
hydrotreating (Zhu et al. 2023). Based on different protein market constraints, three scenarios are 
evaluated in this study. Scenario 1 uses the market size of whey protein as the constraint for 
protein coproduction, Scenario 2 uses the protein ingredients (both plant- and animal-based) 
market size for this constraint, and Scenario 3 assumes fuel production only from whole algae: 
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• Scenario 1: Algae from part of the sites is used for fuel and protein production, subject to 
2030 global whey protein market size limits; after the market is saturated, for the 
remaining site groups, algae is used for fuel production only. 

• Scenario 2: Algae from part of the sites is used for fuel and protein production, subject to 
2030 global protein ingredients market size limits; after the market is saturated, for the 
remaining site groups, whole algae is used for fuel production only. 

• Scenario 3: Algae from all the sites is used for fuel production only (no protein extraction 
is included). 

For scenarios with protein market size constraints, the resulting MFSPs presented further below 
for the fuel and protein production pathway were sorted from low to high, and the sites were 
selected based on the sequence until the given protein market size was saturated. Then the 
remaining sites switched to the fuel-only pathway and their MFSPs were also sorted from low to 
high. Based on different scenarios, different sites can use either the fuel and protein production 
pathway or the fuel-only one. An optimal case is also investigated by assuming the future protein 
market for algae PC products may be larger than 51 million tons/yr, and thus the HTL with 
protein extraction pathway could be used for all sites without reaching protein market limits. The 
current major protein source for food is animal meat, which has a much larger market size than 
the whey protein market assumed in Scenario 1. When assuming the total protein demand for 
food (including both protein ingredients and animal meat protein) as a constraint for algae 
protein production, all the sites could use their algae products for both fuel and protein 
production. Although soybeans are currently the major plant-based protein source, developing 
new sustainable and biodiverse protein products is essential to solve challenges including food 
security, land and water resource consumption, and protein allergenicity. Therefore, there is 
promising potential for algae protein products in the future, and their market size may not track 
constraints for the whey protein market alone. Future studies may benefit from consideration of 
expanding algal protein into animal meat protein markets, though in such a scenario competition 
with other vegetable-based protein sources (e.g., soy protein) would also need to be considered. 
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3 Results 
3.1 Algal Biomass Production 
As previously detailed, selected outputs from the BAT models were run through the algae farm 
TEA models based on site-specific details for monthly cultivation productivities, delivered CO2 
costs, makeup water demands and associated well CAPEX and pumping power, and saline 
blowdown removal rates, including CAPEX and power demands for FO membranes as well as 
injection disposal wells. 

Table 3.1.1 presents a summary of key parameters organized by region. A large portion of the 
viable production sites identified were shown to be in the South-Central region (Texas and 
Louisiana), accounting for nearly 75% of the total area identified and 74% of the total 
microalgae biomass potential. However, the regions supporting the most economical algae 
production were largely concentrated in the Southeast (Florida and nominally Georgia, 
representing 11% of total area and 13% of total biomass potential), driven by higher biomass 
productivities, larger unit farms, and lower variability between productivities in summer versus 
winter. The remainder is produced in the Western region (California and Arizona), reflecting 
somewhat higher biomass costs at lower annual productivities and higher seasonal variability on 
average. Resulting MBSP estimates for each individual farm are mapped to the BAT-identified 
locations as shown in Figures 3.1.1 and 3.1.2 for MBSPs before and after seasonal storage, 
respectively. 

Table 3.1.1. Key Metrics for Algae Farm Availability and Cultivation Productivity for Each U.S. 
Region 

U.S. Region Number of 
Individual Sites 

Total 
Cultivation 

Area (acres) 

Total Biomass 
Output (MM 

tons/yr AFDW) 

Annual 
Productivity 

(g/m2/day 
AFDW) 

Productivity 
Variability 

(max vs. min 
ratio) 

Western 168 521,395 19.7 24.9 6.2 
South-Central 675 2,903,983 112.6 25.8 5.7 

Southeast 137 434,091 19.6 29.8 3.0 
Total 980 3,859,469 151.9 26.2 5.4 
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Figure 3.1.1. MBSP of individual sites before storage ($/U.S. dry ton AFDW, 2020 $). Rectangle 

areas represent the three regional categorizations. 

 
Figure 3.1.2. MBSP of individual sites after storage ($/U.S. dry ton AFDW, 2020 $). Rectangle areas 

represent the three regional categorizations. 
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Despite differences in the parameters that define algae cultivation (e.g., biomass productivity 
potential, salinity of the makeup water, salt disposal requirements, and delivered CO2 costs 
between regions), the possibility of producing algal biomass at reasonable prices in all regions 
was demonstrated, at weighted average MBSPs of $674/ton AFDW and $701/ton AFDW (before 
and after seasonal storage, respectively) across the full site collection producing 152 MM tons 
AFDW algal biomass per year, as depicted in Figure 3.1.3. An alternative resource curve 
reflecting biomass dry weight and energy content metrics is presented in the Appendix (Figure 
S1). This scale translates to the ability to utilize roughly 270 million tons/yr of CO2 captured 
from existing point sources across the United States. As noted above, the inclusion of seasonal 
storage aims to minimize the effect of seasonal production variability swings on the algae 
biomass conversion plant by storing excess peak seasonal biomass for use in lower-production 
seasons; thus, sites that exhibit higher seasonal variability swings during cultivation translate to 
incrementally higher MBSPs after storage (based on higher storage costs and degradation losses, 
though these effects are generally minimal). Figure 3.1.3 also details the cost breakdown for 
three representative cases of algae farms corresponding to low, medium, and high MBSPs along 
the full curve. Trends in overall MBSPs tend to follow an inverse correlation with cultivation 
productivities as expected (e.g., all bars in the breakdown plot of Figure 3.1.3 increase as 
productivity decreases due to lower biomass outputs), though with further factors such as salt 
management and farm size also weighing on individual farm costs as discussed below. An 
interesting finding from this work was that using an FO unit to process the blowdown stream 
incurs relatively low impacts on MBSP in the majority of sites, although FO and brine disposal 
costs increase considerably in sites with the highest blowdown requirements, driven by high 
makeup water salinity and/or evaporation rates. Coupled also with lower costs from the BAT 
model for injection disposal wells compared to previous algae farm TEA modeling assumptions 
(Klein and Davis 2022), the costs for salinity management in this work were generally seen to be 
lower than those in prior TEA modeling efforts, which utilized evaporation ponds followed by a 
fixed cost for injection disposal (a less granular approach based on sparse literature values), 
while also allowing for the recycling of a significant amount of freshwater to the algae farm. 

Relative to the latest 2017 harmonization, which found the potential for producing roughly 100–
200 million tons/yr of algal biomass at national scale based on freshwater or saline cultivation, 
respectively (Davis et al. 2018), the present harmonization update maintains a similar albeit 
slightly reduced biomass potential for saline-only cultivation at approximately 152 million 
tons/yr, now based on improved granularity for CO2 availability and cost as well as blowdown 
water handling for high-saline-tolerant strains (55-ppt cultivation salinity threshold). The overall 
weighted average MBSP is also comparable to the prior saline case, with higher costs for often 
smaller-scale algae farms and higher nutrient demands for replete algae cultivation generally 
offset by reverting to minimally lined ponds as an nth-plant assertion. Detailed breakdowns of the 
MBSPs and algae farm CAPEX for representative cases, alongside the main parameters used to 
define the cultivations, can be found in Tables S1–S8. 
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Figure 3.1.3. Cumulative national-scale biomass production potential and corresponding CO2 
uptake potential versus MBSP (top) and MBSP breakdowns for selected example farm sites 

(bottom) 
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Figure 3.1.4 provides additional insights on the drivers behind the MBSPs of the 980 individual 
sites. The majority of sites (i.e., 74% of the total) reflect MBSPs below $750/ton AFDW, while 
the remaining 26% fall between $750/ton and $940/ton. Consistent with prior findings (Davis et 
al. 2016, 2018), overall MBSPs tend to track closely with algae farm size and cultivation 
productivities (with an increase in either translating to lower MBSPs), reflected by the highest R2 
values in the correlation curves of Figure 3.1.4 for these two parameters typically following 
logarithmic correlations. Salt management also exhibits a notable driver in MBSPs, as evidenced 
by somewhat looser correlations for makeup water salinity and evaporation rate on a linear scale. 
Delivered CO2 cost incurs a less significant influence on MBSP, though this is primarily dictated 
by limiting CO2 availability to the $75/tonne ($83/ton) cutoff threshold applied here. Figure 3.1.4 
also highlights more preferential cultivation parameters concentrated in the Southeast region 
(green markers), including higher productivity, larger farm sizes, and lower evaporation rates as 
a fraction of the total regional farm numbers, with the Western region (blue markers) generally 
exhibiting the inverse. This translates to a greater concentration of Southeastern sites falling 
toward the lower portion of the overall MBSP curve (Figure 3.1.4 A) and more Western sites 
somewhat more concentrated toward the higher portion of the curve, with the South-Central sites 
spanning the entire curve, as this region represents the majority of the full site collection. 
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Figure 3.1.4. Depiction of individual 
MBSPs as a function of different 

parameters: (A) productive region, (B) 
algae farm size, (C) cultivation 

productivity, (D) amount of water sent 
to blowdown disposal, (E) evaporation 
rate, (F) salinity of the makeup water, 

and (G) CO2 delivery cost 
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Figure 3.1.5 displays GHG emissions, fossil fuel energy, and freshwater consumption per ton 
biomass (AFDW) spanning CO2 capture and transport through algae growth, prior to nutrient or 
CO2 recycle, alongside corresponding MBSPs for each individual farm site. On the left-hand 
side, the results are sorted by increasing GHG emissions, while on the right-hand side, the results 
are arranged by MBSP. From Figure 3.1.5, GHG emissions per ton AFDW range from 942 kg to 
1,718 kg; fossil energy consumption varies between 14,192 MJ and 23,789 MJ; and freshwater 
consumption spans from 4,435 to 7,695 liters per ton AFDW. The variations can be attributed to 
the diverse energy requirements for carbon capture and transport, as well as the varying nutrients 
and CO2 consumption specific to each location. Beyond environmental impact variations across 
the locations, Figure 3.1.5 also illustrates that GHG emissions and MBSPs are not strongly 
correlated. For example, one of the stronger drivers in MBSP is farm size, which has no impact 
on GHGs, while energy demands for CO2 sourcing exhibit much stronger influences on GHGs 
than they do on MBSPs.  

 
Figure 3.1.5. Cumulative algae biomass production and corresponding (a) MBSP, (c) GHG 
emissions, (e) fossil energy consumption, and (g) freshwater consumption sorted by GHG 
emissions; cumulative algae biomass production and corresponding (b) MBSP, (d) GHG 

emissions, (f) fossil fuel consumption, and (h) freshwater consumption sorted by MBSP, for algae 
farm biomass cultivation including CO2 capture and transport, prior to nutrients and CO2 recycling 

from downstream conversion. 

Based on the curves above, the minimum, maximum, and weighted average GHG emissions, 
fossil energy usage, and freshwater consumption for algae cultivation are compared to those 
associated with soybean cultivation as shown in Table 3.1.2. The comparison reveals that 
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soybean production generates lower GHG emissions and requires less fossil energy per ton 
AFDW biomass. This disparity can be attributed to the increased energy consumption involved 
in sourcing CO2 and facilitating algae cultivation and growth. However, freshwater consumption 
is considerably more favorable for saline algae cultivation, with all freshwater demands 
attributed to secondary effects associated with CO2, nutrient, and energy sourcing (there is no 
direct freshwater consumption required in the algae farm itself). We also acknowledge that the 
environmental impacts arising from DLUC and indirect land use change (ILUC) may potentially 
increase the environmental footprint of soy PC, particularly when considering incremental future 
production, though these considerations are beyond the scope of this study. 

Table 3.1.2. GHG Emissions, Fossil Energy Consumption, and Freshwater Consumption 
Comparison Between Algae and Soybean Production per Ton AFDW 

 Saline Algae Growth (per ton AFDW) Soybean Production 
(per ton AFDW)   Min Max Weighted Average 

GHG emissions (kg/ton) 942 1,719 1,202 329 
Fossil energy (MJ/ton) 14,063 23,789 17,247 1,568 
Freshwater consumption (L/ton) 4,435 7,695 5,219 81,425 

After subsequently accounting for recycling nutrients and CO2 from downstream conversion, the 
LCA metrics presented above can result in improved environmental performance depending on 
the conversion scenario, as presented in Figure 3.1.6. Conversion operations can recycle more 
nutrients and CO2 when producing only fuel, resulting in additional net cultivation demands for 
nutrients and CO2 in scenarios including production of PC coproduct. 
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Figure 3.1.6. Environmental impacts: (a) GHG emissions (kg CO2e/ton AFDW); (b) fossil fuel 

(MJ/ton AFDW); and (c) freshwater consumption (L/ton AFDW) comparison for algal biomass 
production (including CO2 capture and transport) without (gray curve) and with (yellow/green 

curves) recycling of nutrients and CO2 from downstream conversion, sorted by GHG emissions. 
Green curve reflects fuel-only production (Scenario 3), while yellow curve reflects inclusion of algal PC coproduction 
up to market limits for whey PC replacement (Scenario 1; orange dashed line) or soy PC replacement representing 

the global protein ingredients market (Scenario 2; yellow dashed line). 

LCA Considerations for CO2 Sourcing  
Results for the two allocation strategies considered are shown in Figure 3.1.7. In the cutoff 
approach, the CO2 capture benefit is assigned to the biofuels with no distinction between the 
various capture configurations. The net emissions for high-purity sources (ethanol fermentation, 
renewable natural gas processing, and hydrogen/ammonia production) vary between 32 and 41 g 
CO2e/MJ. These are slightly higher (by about 5 g CO2e/MJ) compared to the results in Cai et al. 
(2021) and the supply chain sustainability analysis carried out by Argonne National Laboratory 
because of somewhat higher CO2 capture energy, and also assuming compression of CO2 to 
pipeline pressure across all cases employed in the present study. That said, high-purity sources 
are limited in volume. For instance, even an optimistic market for using CO2 from ethanol 
fermentation could lead to an upper bound of 44 million tons AFDW algal biomass and 135,000 
GGE biofuel. The net emissions when CO2 is sourced from natural gas combined-cycle power 
plants is 41 g CO2e/MJ, and for pulverized coal power plants is 39 g CO2e/MJ of algae biofuel. 
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While DAC estimates are shown here as a stand-alone case in view of promising future potential 
for comparison purposes, DAC is otherwise outside the scope of this report and is not 
incorporated in any of the harmonization resource model outputs. 

 
Figure 3.1.7. Impact of CO2 sourcing on GHG emissions of algae biofuels using the cutoff or 
incremental approach. This figure represents a generic HTL example for fuel-only production 
based on Singh, Banerjee, and Hawkins (2023); site-specific results are shown in subsequent 

figures. 

3.2 Algal Biofuel and Protein Concentrate 
After incorporating outputs from the TEA farm models based on each individual site, the final 
product yields and MFSPs through HTL conversion for each site are estimated. Two conversion 
pathways, algae conversion to fuel and protein and conversion to fuel only, are first evaluated for 
each site independent of market limitations for the protein coproduct case. For each pathway, all 
sites were sorted from the lowest to highest MFSP values. The detailed process cost 
contributions for selected cases corresponding to the lowest, middle, and highest MFSPs for the 
two conversion pathways are depicted in Figure 3.2.1 (algal fuel and PC coproduction) and 
Figure 3.2.2 (algal fuel production only). The MFSPs for each site are greatly affected by the 
algae biomass feed flowrate cost (MBSP) from the upstream farm models, both tied to 
cultivation productivity. Lower biomass costs and higher algae feed flowrates lead to lower 
MFSPs. For the pathway with fuel and protein coproduction, the MFSPs for all sites range from 
$0.28 to $12.0/GGE, and the feedstock cost represents about 70% of the total production cost 
(excluding coproduct and nutrients credits). For the pathway with fuel only, the MFSPs for all 
sites range from $6.72 to $13.1/GGE, and the feedstock cost contributes 75%–80% of the total 
production cost. For the pathway with fuel and protein production, the protein extraction step 
contributes the largest fraction, 50%–60% ($2.9–$4.4/GGE), of the total conversion cost 
contributions to MFSP (excluding feedstock cost and credits). The high credits from protein 
coproduction outweigh the impacts of extra protein extraction costs and lower fuel yields, and 
thus lead to lower overall MFSPs than fuel production only. However, for the highest MFSPs of 
two pathways, the cost advantage of the fuel and protein pathway is limited. As algal feedstock 
MBSP increases and feed rate decreases (corresponding to lower cultivation productivity in the 
farm model), feedstock cost contributions to MFSP increasingly outweigh the protein coproduct 
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credits on a dollar-per-GGE basis, as the latter remains unchanged over the full range of sites, 
translating to nearly the same MFSP in the most extreme case reflected in Figures 3.2.1–3.2.2. 
Further cost and yield details for selected cases are provided in the Appendix (Tables S9–S12). 

 
Figure 3.2.1. Process contributions to MFSP for algae HTL conversion to fuel and protein for the 

lowest, middle, and highest MFSP cases (excluding protein market volume limitations) 

 
Figure 3.2.2. Process contributions to MFSP for algae HTL conversion to fuels only for the lowest, 

middle, and highest MFSP cases 

The major TEA results for the three market volume scenarios described in Section 2.3, including 
MFSPs for each site, weighted average MFSP, and cumulative fuel and protein production rates, 
are depicted in Figures 3.2.3–3.2.5. The MFSP for each site is arranged in ascending order in the 
figures. The production rates for fuel and protein coproduct of each site are added to those of 
previous sites with lower MFSPs and then form the curves for cumulative fuel and coproduct 
outputs. The weighted average MFSP is calculated based on the MFSP and corresponding fuel 
production rate of each site and then averaged on the total fuel production rate of all sites. 
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Scenario 1 for fuel and protein coproduction with the whey protein market constraint has a 
cumulative weighted average MFSP of $8.49/GGE, with cumulative fuel and SAF production 
rates of 13.9 and 8.3 billion GGE/yr, respectively. When the cumulative protein production 
reaches the global whey protein market size, the MFSP reaches $1.28/GGE lower than the 
$2.5/GGE BETO goal of biofuels. The total algae PC production potential from all sites is 
estimated at 51 million tons/yr, and the whey protein market size is 7.4% of the total protein 
production potential. Therefore, with the whey protein market size constraint, about 7.4% of the 
total national algae production capacity can be used for generating market-competitive fuels with 
high-value protein coproduced. When configured to stop producing the protein coproduct upon 
reaching global market limits for whey PC, algae from the remaining sites reverted to fuel 
production only, and the MFSP jumped from $1.28/GGE (fuel plus protein) to $7.28/GGE (fuel 
only) and continued increasing to $13.1/GGE (max, fuel only) resulting from no protein credits.  

Alternatively, Scenario 2 with the total protein ingredients market size constraint reflects 
cumulative fuel and SAF production rates of 12.6 and 7.5 billion GGE/yr, respectively, 
translating to a weighted average MFSP of $7.89/GGE (roughly $0.60/GGE lower than Scenario 
1). When the cumulative protein production reaches the global protein ingredients market size, 
the MFSP reaches $2.17/GGE, still lower than BETO’s historical $2.5/GGE goal. The protein 
ingredients market size is 26.9% of the total protein production potential of all sites. Thus, about 
26.9% of the total algae production capacity could be used to generate cost-competitive fuels. 
When the cumulative algae PC output reached global market limits for protein ingredients, algae 
from the remaining sites reverted to fuel production only, and the MFSP jumped from 
$2.17/GGE (fuel and protein) to $7.79/GGE (fuel only) and continued increasing to $13.1/GGE 
(max, fuel only) resulting from no protein credits. Finally, Scenario 3 for fuel production only 
achieves cumulative fuel and SAF production rates of 14.4 and 8.6 billion GGE/yr, respectively, 
with a weighted average MFSP higher than the other two scenarios at $8.69/GGE (about 
$0.80/GGE higher than Scenario 2) given the lack of protein production cost and credits. 

 

Figure 3.2.3. Algae HTL conversion cumulative fuel and protein coproduction outputs and 
corresponding MFSP (Scenario 1: global whey protein market size limit) 
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Figure 3.2.4. Algae HTL conversion cumulative fuel and protein coproduction outputs and 
corresponding MFSP (Scenario 2: global protein ingredients market size limit) 

 
Figure 3.2.5. Algae HTL conversion cumulative fuel production outputs and corresponding MFSP 

(Scenario 3: fuel production only) 

A summary of the three scenarios, as well as an alternative “optimal” case showing total fuel and 
protein coproduction rates and corresponding weighted average MFSPs, is depicted in Figure 
3.2.6. The optimal case assumes the algae from all site groups may be used to produce both fuel 
and protein products without being subject to protein market limitations (i.e., assuming the 
protein market size is larger than the total algae PC production rate from the full collection of 
sites). The production rate of the algae PC coproduct is subject to the underlying protein market 
size constraint for the various scenarios, and it has significant impacts on the achievable MFSP. 
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When the assumed market size for the algae PC coproduct is not a limitation, algae from all site 
groups may be used to generate protein coproduct, which enables maintaining the high coproduct 
credit across the full collection of sites and a significantly lower MFSP of $3.72/GGE. 

 

Figure 3.2.6. Algae HTL conversion—total fuel and protein coproduction outputs across the full 
site collection and corresponding weighted average MFSPs for the three case scenarios and an 

optimal case (no protein market volume constraints) 

For LCA modeling, four coproduct calculation methods—mass allocation, economic value 
allocation, system expansion (displacement), and biorefinery-level analysis—have been 
considered in this study. As mentioned in the “Coproduct Handling in TEA and LCA Models” 
section, mass and economic value allocations are both “process-level”-based allocations. More 
specifically, processes exclusively associated with fuel production or PC production are allocated 
solely to fuel or PC, respectively. For processes used for both fuel and PC, they are assigned sub-
allocation factors based on feedstock mass and economic values of the product, respectively. For 
the system expansion (displacement) method, it is assumed that the bio-coproduct microalgae PC 
can be used to replace whey PC, soy PC, or animal feed supplement, such as soybean meal or 
alfalfa meal. As a base case, a mass allocation method is selected to illustrate the environmental 
performance over the full collection of sites, either with or without inclusion of algae PC 
coproduction (excluding protein market volume constraints), depicted in Figure 3.2.7. In order to 
enhance comprehension of the environmental impact variances resulting from different 
coproduct calculation methods, Figure 3.2.8 presents the environmental results derived from 
allocation and system expansion (displacement) methods, while Figure 3.2.9 shows the results 
based on biorefinery-level analysis.  

As depicted in Figure 3.2.7, the inclusion of microalgae PC coproduction exhibits slightly better 
performance in terms of GHG emissions when compared to fuel-only production. Specifically, 
GHG emissions from the scenario involving both microalgae PC and fuel production without 
market limitations range from 48 g/MJ to 90 g/MJ with the mass allocation method, whereas 
emissions from the fuel-only scenario range from 69 g/MJ to 118 g/MJ (Figure 3.2.7 (a) and (d)). 
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In other words, the credits gained from PC coproduction outweigh the additional energy and 
materials required for protein extraction and processing to PC coproduct, in terms of GHG 
emissions, when employing the mass allocation method. However, in the scenario that produces 
both fuel and PC without market limits, fossil energy consumption is comparable, but freshwater 
consumption is higher compared to the scenario that only produces fuel. The increase in 
freshwater consumption is primarily attributed to the water footprint embodied in increased net 
urea and DAP usage during algae growth, given lower nutrient recycle rates to cultivation when 
algae PC coproduction is included, as discussed previously (Figure 3.2.7 (c) and (f)). Namely, to 
produce 1 kg of urea and DAP, about 4.8 L and 37.0 L of freshwater are consumed, respectively. 

 
Figure 3.2.7. Life cycle (a) GHG emissions, (b) fossil energy use, and (c) freshwater consumption 
across all sites for the HTL pathway with both fuel and PC production by using mass allocation 
(no protein market constraints); compared to (d) GHG emissions, (e) fossil energy use, and (f) 

freshwater consumption for the HTL pathway with only fuel production. 

In Figure 3.2.8, we compare three coproduct handling methods, using the site with median GHG 
emissions as an illustrative example. The system expansion (displacement) method demonstrates 
a scenario assuming soy PC is displaced in light of the considerations for whey PC being less 
likely to cease being produced given that whey PC itself is a byproduct (as discussed 
previously); further details on credits related to whey PC, soy PC, and animal feed can be found 
in Tables S29, S33, and S34 in the Appendix. From Figure 3.2.8, mass versus economic 
allocation methods produce similar trends, resulting in improved GHG emissions and fossil 
energy performance but higher water consumption when compared to petroleum diesel. The 
most favorable results are achieved with economic value allocation based on whey PC, followed 
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by mass allocation and then economic allocation based on soy PC. However, the displacement 
method based on soy PC displacement leads to higher GHG emissions and fossil fuel usage but 
significantly lower freshwater consumption compared to petroleum diesel. The results from the 
displacement method can be explained by water-intensive soybean farming but more GHG- and 
fossil-energy-efficient production of soy PC when compared with saline algae PC, as shown in 
Table 3.1.2.  

 
Figure 3.2.8. LCA results for (a) GHG emissions, (b) fossil energy use, and (c) freshwater 

consumption by using different coproduct handling methods for a single example site with 
median GHG emissions; LCA results over the full site collection for (d) GHG emissions, (e) fossil 

energy use, and (f) freshwater consumption reflecting algae PC coproduction constrained by 
whey PC market limits (orange dashed lines) or soy PC market limits representing the protein 
ingredients market (yellow dashed lines) with mass and economic value allocation methods. 
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Figure. 3.2.9. Biorefinery-level comparison of (a) GHG emissions and (b) production costs 

between microalgal fuel plus PC coproduction versus conventional fuel and PC production and 
algal fuel-only production versus conventional fuel production with 2023 grid electricity and zero-
GHG electricity (the box and whisker plots display the minimum, 10th percentile, 90th percentile, 

and maximum values). 
Note: Conventional fuel cost is based on its wholesale price, while soy PC and whey PC costs are based on their 

projected market price.  

The biorefinery-level analysis aims to quantify the total life cycle GHG emissions from all 
products and their potential GHG emission reductions when displacing conventionally made 
counterpart products. As shown in Figure 3.2.9 (a), the algal biorefinery results in lower GHG 
emissions compared to conventional fuel and whey PC production (−467 g CO2e per MJ of fuel 
and 0.05 kg of PC production), but higher GHG emissions compared to conventional fuel and 
soy PC production (+85 g CO2e per MJ of fuel and 0.05 kg of PC production). These differences 
are primarily due to more GHG-intensive operations for conventional whey PC than 
conventional soy PC production. However, these results could be significantly improved by 
replacing U.S. grid electricity with renewable energy that has zero carbon intensity produced on-
site for the algal facility and upstream productions, which would reduce GHG emissions by 50% 
when compared to conventional fuel and soy PC production with zero-GHG electricity. 
However, it is worth noting that in real-world conditions, solar and wind energy may require 
energy storage systems, which can result in carbon intensity higher than zero. Although natural 
gas used in the HTL pathway could also be replaced with renewable natural gas, specific results 
are not provided here due to potential variations in GHG emissions based on different feedstocks 
and locations. Nevertheless, if the carbon intensity from natural gas consumption can be reduced 
to zero, GHG emissions from the algal biorefinery using zero-carbon-intensity electricity could 
further decrease by 50%. This highlights the significant role played by the carbon intensity of 
energy sources in the decarbonization of algal biorefineries. Figure 3.2.9 (a) also compares GHG 
emissions at the biorefinery level between algal fuel and conventional fuel. It reveals a slight 
decrease in emissions for algal fuel compared to conventional fuel (−4.6 g CO2e/MJ). However, 
by replacing U.S. grid electricity with zero-carbon-intensity electricity for both algal and 
conventional fuel production, a GHG emissions reduction of 68% can be achieved when 
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comparing algal fuel to conventional fuel. From another perspective, it is noticeable that the 
electricity consumption for algal fuel is significantly lower than that for e-fuel. Specifically, 
0.07–0.2 kWh of electricity is used per megajoule of algal fuel, and 0.7–2.2 kWh of electricity is 
used per megajoule of e-fuel (Li et al. 2023).  

The biorefinery-level system costs are also analyzed here to illustrate the overall biorefinery-
level costs and potential reductions. As shown in Figure 3.2.9 (b), an algal biorefinery with both 
fuel and PC production exhibits a higher algal biorefinery production cost compared to the 
wholesale price of conventional fuel (taking 5-year average wholesale prices for petroleum 
diesel, jet fuel, and naphtha as a reference: $2.6/GGE) and market price of soy PC, but a lower 
biorefinery production cost compared to the wholesale price of conventional fuel and market 
price of whey PC. In addition, if only producing fuel, the biorefinery algal fuel is more expensive 
than conventional fuel, even with minimum value. It is worth noting that the comparison relies 
on the wholesale price of conventional fuel and the market price of whey PC and soy PC, rather 
than the system costs. This is due to the limited data available on the production costs of whey 
PC and soy PC. Nevertheless, it is a common understanding that market prices or wholesale 
prices should exceed production costs, but the comparison results should remain unchanged 
because the additional costs associated with market prices or wholesale prices are unlikely to 
significantly affect the results. Based on the biorefinery-level analysis approach, algal PC does 
not enable an improvement in GHG emissions and production costs when compared with 
average soybean PC, although it does demonstrate a significant improvement when compared to 
whey PC. However, as discussed previously, it is important to reiterate that the current whey PC 
market is quite limited, and as whey is a byproduct of cheese production, its production would 
not necessarily be hindered by replacement with algal PC. Nevertheless, if electricity and natural 
gas can be replaced with more sustainable energy sources such as solar, wind, and renewable 
natural gas, the GHG emissions from the algal biorefinery could be significantly reduced, 
potentially resulting in lower GHG emissions than those associated with conventional fuel and 
soy PC production. 
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4 Conclusions and Key Findings 
This work reiterates the potential for substantial contributions to national-scale biomass volumes 
that can be produced from microalgae, enabled by CO2 capture from currently existing point 
sources, unencumbered land that does not compete with food, and saline groundwater. Based on 
more refined details in locating and procuring such resources relative to prior studies, this 
harmonization analysis identified roughly 150 million tons per year AFDW of algal biomass 
production potential capturing 268 million tons of CO2 from 3.9 million acres of open ponds 
across the CONUS at an average production cost (MBSP) of $674/ton based on future 
productivity performance goals. MBSPs for individual farm sites varied between $554 and $934 
per ton as a function of farm size, cultivation productivity, degree of variability in seasonal 
productivity swings, delivered CO2 cost, and saline water handling expenses. The addition of 
long-term seasonal storage to equalize monthly biomass flows to downstream conversion added 
roughly $30/ton to these figures. Without conflicting against prior harmonizations focused on 
high-lipid biomass cultivation in large farms, the results presented here for biomass production 
translate to higher fuel costs, lower fuel yields, and higher GHG emissions based on high-protein 
algae cultivation using generally smaller farms (3,900 acres on average), but accordingly may be 
viewed as a more near-term scenario for algae. The associated GHG emissions for biomass 
production vary between 942 and 1,718 kg CO2e per ton AFDW biomass, with an average over 
the full collection of sites at 1,198 kg CO2e/ton. Similar to cost results, GHG emissions vary by 
site, driven by biomass yields (productivity), makeup/blowdown water handling energy 
demands, nutrient consumption, and CO2 capture energy for delivery to the farm specific to 
typical CO2 concentrations in the flue gas from each point source industry. 

Moving to downstream conversion, the TEA of algae HTL with protein extraction pretreatment 
demonstrated encouraging potential for SAF and concentrated protein production from algae 
conversion. Based on different protein market size constraints, up to 7.4% (whey protein market) 
or 26.8% (protein ingredients market) of the total national algae production capacity could be 
used to generate cost-competitive (<$2.5/GGE) fuels driven by high credits from protein 
coproduction. The lowest weighted average MFSP for the full national-scale collection of sites 
was estimated to be $7.89/GGE when producing protein up to the protein ingredients market size 
limit, and the highest MFSP was $8.69/GGE for fuel production only. The scenario taking algae 
to fuel only could enable a maximum total fuel production potential of 14.4 billion GGE/yr, 
which includes a SAF production rate of 8.6 billion GGE/yr, for the full collection of sites. 
Under the most optimal scenario, a maximum PC production potential of 51 million tons/yr 
could be reached nationally from all sites without protein market size constraints, which would 
bring average MFSPs down to $3.72/GGE, albeit with lower total fuel production potential of 
7.7 billion GGE/yr. Considering the large protein market needs for food/feed applications and 
the potential for large-scale microalgae production reported here, the market for algae protein 
products as an alternative to other food-based proteins has potential to grow and become more 
competitive in the future.  

In this study, mass allocation was used as the primary method to compare life cycle 
environmental impacts. GHG emissions from fuel and PC coproduction, without market limits, 
range from 48 to 90 g CO2e/MJ, with a weighted average of 61 g/MJ. In contrast, GHG 
emissions from fuel-only production range from 69 to 118 g/MJ, with a weighted average of 85 
g/MJ, compared to conventional fuels at 87 g/MJ. These results indicate that the GHG emissions 
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allocated to algal PC production outweigh the effects of increased emissions from PC production 
and the greater nutrient requirements in algae cultivation given lower nutrient recycle with PC 
coproduction. Alternatively, taking a biorefinery-level analysis approach in LCA, an algal 
biorefinery with PC coproduction does not achieve an improvement in GHG emissions when 
compared to conventional fuel and soy PC production in light of conventional soy production 
being less GHG-intensive (though considerably more water-intensive than saline algae 
cultivation). However, it does demonstrate a significant improvement when compared to 
conventional fuel and whey PC production, with a caveat that the current market for whey PC is 
small, and being a byproduct of the cheese industry, its production would not be hindered by 
replacement with algal protein. Electricity and natural gas consumption across the integrated 
facility represent the primary contributors to GHG emissions. By using renewable electricity and 
natural gas with zero carbon intensity, biorefinery-level GHG emissions could be reduced by 
roughly 77%, resulting in lower GHG emissions than even conventional fuel and soy PC 
production. Alternatively, an algal biorefinery with only fuel production achieves moderate 
reductions in GHG emissions when compared to conventional fuel benchmarks, though again 
through the implementation of zero carbon intensity electricity and natural gas, biorefinery-level 
GHG emissions for the fuel only scenario could similarly be reduced by roughly 70%. 

In addition to replacing conventional electricity and natural gas with renewable energy, future 
analysis efforts can benefit by exploring passive CO2 sourcing, namely DAC and biogenic CO2 
sources. These are particularly important for a low-carbon algal fuel production system under 
future industrial decarbonization advancements that may result in fewer fossil point sources for 
CO2 capture. Additionally, optimizing nutrient recycling from conversion to cultivation is 
essential. Finally, exploring other coproduct options could lead to improved GHG emissions and 
cost metrics beyond the scope of this analysis around protein for food/feed applications, such as 
production of bioplastics from algal proteins (or other food scenarios such as meat alternatives). 
Beyond these considerations, moving away from high-protein cultivation in favor of high-lipid 
algal compositional targets can significantly improve both costs and GHG emissions for algal 
biorefinery systems by way of higher fuel yields and alternate coproduct opportunities, though 
recognizing that may represent a longer-term scenario to maintain comparable cultivation 
productivity performance. 
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Appendix 
 

TEA Result Details for Algae Farm Models 
Table S1. Seasonal Parameters for a Site With Low MBSP 

Parameter Summer Fall Winter Spring Average 
Productivity (g/m2/day) 43.7 30.7 21.8 37.9 33.5 
Evaporation rate (cm/day) 0.59 0.39 0.31 0.57 0.46 
Pond blowdown volume (m3/h) 650 425 344 644 515 
Pond freshwater input from FO (m3/h) 1,329 934 665 1,154 1,020 
Saline groundwater input (m3/h) 11,612 7,718 6,074 11,191 9,149 
Brine water for deep-well injection (m3/h) 292 205 146 253 224 

Table S2. Seasonal Parameters for a Site With Medium MBSP 

Parameter Summer Fall Winter Spring Average 
Productivity (g/m2/day) 43.5 25.4 11.3 30.0 27.6 
Evaporation rate (cm/day) 0.96 0.51 0.31 0.74 0.63 
Pond blowdown volume (m3/h) 62 32 20 48 41 
Pond freshwater input from FO (m3/h) 129 76 34 89 82 
Saline groundwater input (m3/h) 1,812 975 578 1,387 1,188 
Brine water for deep-well injection (m3/h) 28 17 7 20 18 

Table S3. Seasonal Parameters for a Site With High MBSP 

Parameter Summer Fall Winter Spring Average 
Productivity (g/m2/day) 43.0 23.9 9.6 27.9 26.1 
Evaporation rate (cm/day) 0.91 0.47 0.27 0.66 0.58 
Pond blowdown volume (m3/h) 790 410 237 579 504 
Pond freshwater input from FO (m3/h) 648 336 194 474 413 
Saline groundwater input (m3/h) 2,469 1,281 737 1,806 1,573 
Brine water for deep-well injection (m3/h) 142 74 43 104 91 
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Table S4. Additional Nonseasonal Parameters for Selected MBSP Scenarios 

Parameter MBSP Scenario 
Low Medium High 

Salinity of makeup water (mg/L) 5,597 3,289 27,622 
Groundwater well – CAPEX (MM$) 0.09 0.95 1.80 
Groundwater well – average power requirement (kW) 816 1,183 2,462 
Groundwater well – total OPEX (MM$/yr) 0.44 0.64 1.33 
FO unit – CAPEX (MM$) 33.07 3.22 16.1 
FO unit – average power requirement (kW) 6,844 550 2,771 
FO unit – total OPEX (MM$/yr) 4.68 0.38 1.90 
Deep-well injection – CAPEX (MM$) 1.47 0.39 1.80 
Deep-well injection – average power requirement (kW) 32 5 16 
Deep-well injection – total OPEX (MM$/yr) 0.49 0.04 0.20 

Table S5. MBSP Breakdown for a Representative Site With Low MBSP 

Item Unit Quantity Total Cost ($/U.S. 
ton AFDW) 

Cultivation     
Urea kg/h 10,835 97.1 
DAP kg/h 3,194 36.3 
CO2 supply kg/h 146,956 105.3 
Electricity kW 19,462 18.9 
Saline water m3/h 8,976 0.0 
Inoculum    
Urea kg/h 311 2.8 
DAP kg/h 81 0.9 
CO2 supply kg/h 3,194 2.3 
Electricity kWh 532 0.5 
Saline water m3/h 173 0.0 
Chiller GJ/h 30 2.5 
Dewatering    
Electricity kW 3,435 3.3 
Salinity Management    
Electricity kW 7,692 7.5 
Other costs - - 2.6 
Other    
Labor - - 25.4 
Maintenance - - 10.4 
Insurance  - 11.2 
Capital depreciation - - 53.0 
Income tax - - 18.0 
Return on investment - - 156.0 
Total MBSP - - 553.6 
Algae biomass production kg AFDW/h 63,623 - 
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Table S6. MBSP Breakdown for a Representative Site With Medium MBSP 

Item Unit Quantity Total Cost ($/U.S. 
ton AFDW) 

Cultivation     
Urea kg/h 870 97.1 
DAP kg/h 257 36.2 
CO2 supply kg/h 11,806 103.3 
Electricity kW 1,769 21.4 
Saline water m3/h 1,166 0.0 
Inoculum    
Urea kg/h 25 2.8 
DAP kg/h 7 0.9 
CO2 supply kg/h 258 2.3 
Electricity kWh 51 0.6 
Saline water m3/h 22 0.0 
Chiller GJ/h 3 3.0 
Dewatering    
Electricity kW 276 3.3 
Salinity Management    
Electricity kW 1,737 21.0 
Other costs - - 2.6 
Other    
Labor - - 110.5 
Maintenance - - 15.4 
Insurance  - 15.3 
Capital depreciation - - 74.0 
Income tax - - 24.0 
Return on investment - - 211.0 
Total MBSP - - 745.2 
    
Algae biomass production kg AFDW/h 5,112 - 
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Table S7. MBSP Breakdown for a Representative Site With High MBSP 

Item Unit Quantity Total Cost ($/U.S. 
ton AFDW) 

Cultivation     
Urea kg/h 882 104.4 
DAP kg/h 258 38.6 
CO2 supply kg/h 11,759 109.2 
Electricity kW 1,864 23.9 
Saline water m3/h 1,552 0.0 
Inoculum    
Urea kg/h 26 3.1 
DAP kg/h 7 1.0 
CO2 supply kg/h 265 2.5 
Electricity kWh 59 0.8 
Saline water m3/h 21 0.0 
Chiller GJ/h 3 3.4 
Dewatering    
Electricity kW 260 3.3 
Salinity Management    
Electricity kW 5,250 67.4 
Other costs - - 14.0 
Other    
Labor - - 117.3 
Maintenance - - 18.4 
Insurance  - 20.3 
Capital depreciation - - 97.0 
Income tax - - 32.0 
Return on investment - - 277.0 
Total MBSP - - 934.3 
Algae biomass production kg AFDW/h 4,816 - 
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Table S8. CAPEX Breakdown for Selected Sites 

MBSP Scenario Low Medium High 
Algae farm size (acres) 11,052 1,080 1,136 
Algae farm section Installed cost (MM 2020 $) a 

Production ponds 391.2 38.5 54.6 
Inoculum 28.5 2.8 3.0 
CO2 storage 26.0 1.8 1.8 
Water circulation 37.4 4.6 6.4 
Dewatering 112.6 14.9 14.9 
Storage 14.8 4.0 4.6 

Total installed cost 610.5 66.6 85.2 
Warehouse 9.6 1.1 1.3 
Site development 36.0 3.9 4.0 
Additional piping 5.1 0.7 0.7 

Total direct cost (TDC) 661.1 72.2 91.2 
Indirect cost    

Proratable expenses 31.3 3.6 4.2 
Home office & construction fees 71.4 8.0 9.7 
Field expenses 33.2 3.8 4.5 
Project contingency 66.1 7.2 9.1 
Other costs (startup, permits, etc.) 25.5 3.0 3.4 

Total indirect cost 2,227.5 25.5 31.0 
Fixed capital investment 888.7 97.7 122.1 

Working capital 44.4 4.9 6.1 
Land 50.5 4.9 5.2 

Total capital investment 983.6 107.5 133.5 
a Methodology and rationale consistent with the assumptions in Davis et al. (2016) and with the modifications detailed 
in this report. 

 

 
Figure S1. Biomass cost versus resource curves reflecting TEA modeling for individual farms: 

MBSP before storage in dollars per ton AFDW (blue curve), dollars per ton dry weight (red curve), 
and dollars per MM Btu higher heating value (HHV) energy content (green curve; dry weight 

biomass basis). Top axis for CO2 uptake potential corresponds to the blue AFDW curve only.  
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TEA Result Details for Algae HTL Conversion 

Table S9. Detailed Cost Results of Selected Cases for the Algae HTL Conversion to Fuel and 
Protein System 

Processing Area Cost Contributions & Key 
Technical Parameters Metric 

Low, 
Fuel + PC 

Mid, 
Fuel + PC 

High, 
Fuel + PC 

Fuel selling price $/GGE $0.28 $5.42 $12.02 
Conversion contribution $/GGE ($10.58) ($9.17) ($6.58) 
Production diesel  MM GGE/yr 5.0 1.2 0.4 
Production SAF MM GGE/yr 17.2 4.0 1.3 
Production naphtha MM GGE/yr 6.4 1.5 0.5 
Diesel yield (AFDW feedstock basis) GGE/U.S. ton feedstock 9.1 9.1 9.1 
Jet fuel yield (AFDW feedstock basis) GGE/U.S. ton feedstock 31 31 31 
Naphtha yield (AFDW feedstock basis) GGE/U.S. ton feedstock 12 12 12 
Production PC 1,000 U.S. tons/yr 190 44 14 
Natural gas usage - total (AFDW algae basis) scf/U.S. ton feedstock 1,023 1,023 1,023 
Feedstock      
Total cost contribution $/GGE fuel $10.86 $14.59 $18.60 
Feedstock type   Algae only Algae only Algae only 
Feedstock cost (AFDW basis) $/U.S. ton feedstock $565 $760 $968 
Protein Extraction      
Total cost contribution $/GGE fuel $2.91 $3.26 $4.44 
Capital cost contribution $/GGE fuel $1.42 $1.58 $2.27 
Operating cost contribution $/GGE fuel $1.48 $1.68 $2.16 
HTL Biocrude Production      
Total cost contribution $/GGE fuel $0.64 $0.99 $1.43 
Capital cost contribution $/GGE fuel $0.42 $0.63 $0.89 
Operating cost contribution $/GGE fuel $0.22 $0.36 $0.54 
LHSV vol/h/vol 4.0 4.0 4.0 
HTL biocrude yield (AFDW) lb/lb PEA feed 0.41 0.41 0.41 
HTL Biocrude Hydrotreating to Finished Fuels      
Total cost contribution $/GGE fuel $0.48 $0.69 $0.95 
Capital cost contribution $/GGE fuel $0.26 $0.39 $0.54 
Operating cost contribution $/GGE fuel $0.22 $0.30 $0.41 
Mass yield on dry HTL biocrude lb/lb biocrude 0.83 0.83 0.83 
HTL Aqueous Phase Treatment      
Total cost contribution $/GGE fuel $0.18 $0.36 $0.61 
Capital cost contribution $/GGE fuel $0.13 $0.24 $0.39 
Operating cost contribution $/GGE fuel $0.05 $0.12 $0.22 
Balance of Plant      
Total cost contribution $/GGE fuel $0.47 $0.79 $1.24 
Capital cost contribution $/GGE fuel $0.26 $0.46 $0.73 
Operating cost contribution $/GGE fuel $0.22 $0.34 $0.52 
Credits     
Coproduct credit $/GGE fuel (13.37) (13.37) (13.37) 
Nutrient recycle credit $/GGE fuel (1.89) (1.89) (1.89) 
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Table S10. Detailed Cost Results of Selected Cases for the Algae HTL Conversion to Fuel-Only 
System 

Processing Area Cost Contributions & 
Key Technical Parameters Metric 

Low, Fuel 
Only 

Middle, Fuel 
Only 

High, Fuel 
Only 

Fuel selling price $/GGE $6.72 $9.66 $13.07 
Conversion contribution $/GGE $0.25 $1.63 $2.40 
Production diesel  MM GGE/yr 12.9 1.2 0.6 
Production SAF MM GGE/yr 44 4 2 
Production naphtha MM GGE/yr 16.7 1.6 0.8 

Diesel yield (AFDW feedstock basis) 
GGE/U.S. ton 
feedstock 17 17 17 

SAF yield (AFDW feedstock basis) 
GGE/U.S. ton 
feedstock 58 58 58 

Naphtha yield (AFDW feedstock basis) 
GGE/U.S. ton 
feedstock 22 22 22 

Natural gas usage - fuel production 
(AFDW basis) 

scf/U.S. ton 
feedstock 4,409 4,409 4,409 

Feedstock      
Total cost contribution $/GGE fuel $6.47 $8.03 $10.68 
Feedstock type   Algae only Algae only Algae only 
Feedstock cost (AFDW basis) $/U.S. ton blend $580 $720 $957 

HTL Biocrude Production      
Total cost contribution $/GGE fuel $0.60 $1.19 $1.52 
Capital cost contribution $/GGE fuel $0.38 $0.72 $0.89 
Operating cost contribution $/GGE fuel $0.22 $0.47 $0.63 
LHSV vol/h/vol 4.0 4.0 4.0 

HTL biocrude yield (AFDW) lb/lb feed 0.39 0.39 0.39 
HTL Biocrude Hydrotreating to 
Finished Fuels      
Total cost contribution $/GGE fuel $0.46 $0.81 $0.99 
Capital cost contribution $/GGE fuel $0.24 $0.44 $0.53 
Operating cost contribution $/GGE fuel $0.22 $0.37 $0.46 
Mass yield on dry HTL biocrude lb/lb biocrude 0.79 0.79 0.79 
Balance of Plant      
Total cost contribution $/GGE fuel $0.42 $0.85 $1.11 
Capital cost contribution $/GGE fuel $0.19 $0.45 $0.58 
Operating cost contribution $/GGE fuel $0.23 $0.40 $0.52 
Credits     
Nutrient recycle credit $/GGE fuel (1.22) (1.22) (1.22) 
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Table S11. Capital Cost Results of the Algae HTL Conversion to Fuel and Protein System 

Installed Cost  Million $ (2020 U.S. $) % of Total Installed Cost 
Protein extraction  $49.3 48% 
HTL  $19.7 19% 
Biocrude upgrading to finished fuels  $12.2 12% 
Aqueous phase treatment  $7.50 7.3% 
Hydrogen generation  $7.68 7.5% 
Balance of plant  $6.60 6.4% 
Total installed cost $103 100% 
Warehouse (1% of inside battery limit [ISBL])  $1.03 -- 
Site development (9% of ISBL)  $9.27 -- 
Additional piping (4.5% of ISBL)  $3.99 -- 
TDC $117 -- 
Indirect cost   -- 
Prorated expenses (10% of TDC)  $11.7 -- 
Home office & construction fees (20% of TDC)  $23.5 -- 
Field expenses (10% of TDC)  $11.7 -- 
Project contingency (10% of TDC)  $11.7 -- 
Other costs (startup, permits, etc.) (5% of TDC)  $5.87 -- 
Total indirect cost  $64.5 -- 
Fixed capital investment $182 -- 
Working capital (5% of fixed capital investment)  $9.09 -- 
Total capital investment $191 -- 
Note: The capital cost listed in this table as an example is for the case with median value of MFSPs for 
all sites. For sites with different algae production rates, the capital cost results are different due to 
variance in plant scales. 
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Table S12. Operating Cost Results of the Algae HTL Conversion to Fuel and Protein System 

Raw Materials  Unit Price 
(2020 U.S. $) Unit Consumption 

(per GGE fuel) Cost (MM$/yr) 

Algae feedstock cost  760 a $/ton AFDW 0.019 96.9 
Natural gas  3.32 $/1,000 scf 0.047 1.04 
Cooling tower chemicals  36.3 $/ton-yr cooling 0.00025 0.06 
Sulfuric acid 0.047 $/lb 0.38 0.12 
Flocculant  229 $/ton 0.00022 0.33 
NaOH  0.26 $/lb 0.015 0.03 
HCl  0.49 $/lb 0.0029 0.01 
Hydrogen plant catalyst  2.20 ¢/1,000 scf H2 0.11 0.02 
Hydrotreating main bed catalyst  11.3 $/lb 0.0011 0.08 
Hydrotreating guard bed fill  17.8 $/lb 0.0030 0.36 
HDN catalyst  17.8 $/lb 0.00047 0.06 
Hydrocracking catalyst  17.8 $/lb 0.000081 0.01 
Sum     99.0 
Utilities      
Water makeup  0.40 $/tonne 0.017 0.02 
Electricity  7.31 ¢/kwh 11.3 3.12 
Sum     3.14 
Credits      
PC (coproduct)  1.00 $/lb 13.4 −88.8 
Urea (N recycle equivalent)  0.29 $/lb 4.69 −4.45 
CO2 (C recycle equivalent) 0.02 $/lb 26.6 −4.13 
DAP (P recycle equivalent)  0.36 $/lb 1.65 −3.96 
Sum     −101 
Total Variable Operating Costs     −0.78 
a Note: Algae feedstock and other variable operating costs listed in this table as an example are for 
the case with median value of MFSPs for all sites. For sites with different algae production rate and 
feedstock cost, the operating cost results are different. 
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LCI Details 

Upstream LCI for FO Membrane 
Table S13. LCI of FO Membrane Fabrication 

Material Inputs (kg)  Sources Notes 
Viscose fiber with extrusion 2.74E-02 Section 1.1 Membrane active 

layer 
Glass fiber reinforced plastic with calendering 2.55E-01 GREET2, 

literature 
Membrane support 
layer 

Polyurethane, flexible foam 2.46E-01 GREET1 Glue 
Polyvinyl chloride with extrusion 7.31E-02 GREET1 Sealant tape 
Polypropylene with extrusion 5.70E-02 GREET1 Filament tape 
Polystyrene with calendaring 3.97E-01 GREET1, 

literature 
Feed spacer 

Freshwater  1.70E+00  Routine cleaning 
Stainless steel 1.48E-02 GREET2 Feed strainer 

housing/basket 
Acrylonitrile butadiene styrene with injection 
molding 

2.51E-03 GREET1, 
literature 

Pressure vessel 
middle membrane 
connector 

Polyvinyl chloride with injection molding 4.26E-03 GREET1 Pressure vessel 
and adaptors 

Hot rolled steel 8.49E-01 GREET2 Tube 
Galvanized steel 1.71E-02 GREET2 Tube 
High-density polyethylene with injection 
molding 

3.95E-01 GREET1 Tanks 

Glass fiber reinforced polymer with injection 
molding 

4.15E-01 GREET2, 
literature 

Pressure vessels 

      
Output (kg)     
FO membrane 1.00E+00    
Infrastructure 1.75E+00    
Wastewater  1.70E+00    

Upstream LCI for Whey PC Production 
The LCI of whey PC was obtained from Bacenetti et al. (2018) and incorporated into the GREET 
model. Detailed input material and energy consumption for producing 1 kg of whey PC can be 
found in Table S14. Whey PC 35%, whey PC 60%, and whey PC 80% reflect different whey 
protein concentrations available in the market (approximately 35%, 60%, and 80% protein 
content on a dry mass basis, respectively). Here, three replacement approaches are considered, 
taking into account dry mass, protein content, and digestible protein. A 100% replacement ratio 
was achieved when mass was used as the matching unit. The replacement ratios by using protein 
content and digestible protein are summarized in Table 2.2.10. 

Liquid whey is the main feedstock for whey PC production and is a coproduct of cheese making 
and casein manufacturing in the dairy industry (Bacenetti et al. 2018). The LCI of upstream 
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liquid whey production was calculated based on two sources using the GREET model (Kim et al. 
2013; Aguirre-Villegas et al. 2012). The first LCI source was obtained from Kim et al. (2013) 
and provides detailed LCI of liquid whey production using mixed allocation methods. The first 
allocation method is the default solid weight allocation of milk solids in each coproduct, while 
the second involves a survey sent to plant operators to estimate allocation. Plant-specific 
allocation is employed if provided by the plants. If neither of the first two methods is applicable, 
revenue-based allocation is utilized when the input fraction is not clearly identified. The adjusted 
LCI data for liquid whey production from Kim et al. (2013) can be found in Table S15. GHG 
emissions from liquid whey production were calculated using the GREET model, as they were 
not available in the literature (Kim et al. 2013). In addition, the LCIs of upstream milk and cream 
production were obtained from literature (Grant and Hicks 2018; Djekic et al. 2014), and 
environmental impacts were calculated using the GREET model. Detailed LCI of milk and 
cream production and associated upstream inventories can be found in this Appendix. 

In addition, GHG emissions from liquid whey production were calculated from the LCI for 
cheese production obtained from literature and three allocation methods—economic value, solid 
content, and nutritional value—by using the GREET model, since the environmental impacts of 
liquid whey production are not provided in literature (Aguirre-Villegas et al. 2012). The 
inventory used for liquid whey production in this study only includes the reception and storage 
stages of fluid milk and making vats, since pasteurization is considered part of milk production 
and whey PC production. These two steps cannot be further divided, and the three allocation 
methods (economic, solid content, and nutritional value) were used to allocate the environmental 
impacts arising from cheese and liquid whey production, as provided in the literature. Detailed 
LCI data for cheese and liquid whey production, as well as the corresponding allocation factors 
from Aguirre-Villegas et al. (2012), can be found in Tables S16 and S17, respectively. The 
allocation methods utilized in these two references adhere to the guidance provided by the 
International Dairy Federation (2022). The system was divided into subsystems whenever 
feasible, and allocation factors were employed when subdivision was not possible. 

Milk and cream are two main raw materials for cheese and liquid whey production, as shown in 
Tables S18 and S24. The milk used to produce cheese is assumed to be pasteurized milk since all 
the cheese regulated by the U.S. Food and Drug Administration must either be made from 
pasteurized milk or aged at least 60 days (U.S. Food and Drug Administration 2022). In addition, 
the functional unit for milk production is 1 kg of fat- and protein-corrected milk (FPCM), which 
standardizes milk to 4% fat and 3.3% protein. 

The LCI of 1 kg FPCM in the United States was obtained from the literature, where milk 
production is based on Wisconsin condition (Grant and Hicks 2018). The composition of 
produced milk is 3.5% fat and 3.0% protein, and 1 kg of milk production is equal to 0.9968 kg of 
FPCM. A detailed conversion equation is listed below (Thoma et al. 2013), and the LCI of 1 kg 
FPCM production is shown in Table S18. The LCIs of alfalfa feed production of immature cows 
and mature cows and corn silage feed were obtained from literature (Grant and Hicks 2018) and 
adjusted to the GREET model, and detailed information can be found in Tables S19–S22. The 
produced milk needs to be further pasteurized to be used in cheese production, and the material 
and energy consumption for processing milk was adjusted from literature and summarized in 
Table S23 (Grant and Hicks 2018). The transportation from milk production plant to cheese 
production plant was estimated from chemical transportation by medium-/heavy-duty truck in 
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the GREET model, and the transportation of animal feed (alfalfa feed, corn silage, and cotton 
feed) from farm to collection stack and from collection stack to milk production plants was 
added based on corn transportation data obtained from the GREET model.  

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.0929𝐹𝐹+0.05882𝑃𝑃+0.192
0.0929×(4%)+0.05882×(3.3%)+0.192

= 0.092𝐹𝐹+0.05882𝑃𝑃+0.192
0.7576

 (S1) 

Cream is another ingredient to make cheese, which is not available in the current GREET model. 
The LCI of cream was obtained from Djekic et al. (2014), and detailed inventory for cream 
production is summarized in Table S24. Cream is usually coproduced with milk, and it is 
assumed that the transportation of cream from the production plant to cheese production factory 
is the same as milk. 

Table S14. Input Material and Energy Consumption to GREET for Producing 1 kg of Whey PC 

Input Unit WPC35 WPC60 WPC80 
Whey (6% dry weight) kg/kg of whey PC 45.8 80.0 112.8 
Electricity kWh/kg of whey PC 0.49 0.56 0.55 
Natural gas MJ/kg of whey PC 3.6 3.8 3.8 
Water consumption kg/kg of whey PC 0.0 1.3 3.1 

Table S15. Input of 1 kg of Liquid Whey Production (Dry Mass Basis) 

Input Quantities Notes 
Fluid milk, FPCM 7.82E+00 New GREET model, pasteurized milk (detailed 

information is in the Appendix) 
Cream 1.44E-02 New GREET model (detailed information is in the 

Appendix) 
Nitric acid, 50% in H2O (kg) 7.45E-05   
Sodium hydroxide, 50% in H2O (kg) 1.20E-05   
Purchased water, municipal (kg) 3.95E+00   
Electricity (kWh) 1.34E-01   
Heat, natural gas (MJ) 5.25E+00   
Heat, propane/butane (MJ) 1.78E-02   
Heat, light oil (#2) (MJ) 1.71E-04   
Heat, heavy oil (#5 or #6) (MJ)    
Transportation (km) 1.50E+02  

Table S16. LCI of Cheese and Liquid Whey Production 

Input Quantities Units 
Pasteurized milk 1.02E+01 kg 
Thermal energy 7.39E-01 MJ 
Electricity 5.40E-02 kWh 
Output   
Cheese 1.00E+00 kg 
Liquid whey 9.22E+00 kg 
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Table S17. Allocation Percentages 

 Product Total Solids Nutritional Content Economic Value 
Cheese 50% 69% 88% 
Liquid whey 50% 31% 12% 

Table S18. LCI of 1 kg FPCM Production 

Input Quantity Unit Notes 
Water 5.42E+00 kg GREET 
Electricity 6.75E+01 Btu GREET 
Alfalfa silage (immature cows) 9.04E-02 kg New model, Table S19 
Alfalfa silage (mature cows) 2.29E-01 kg New model, Table S20 
Corn silage 2.18E-01 kg New model, Table S21 
Cotton seed 5.73E-02 kg New model, Table S22 
Corn grain 1.89E-01 kg GREET 
Soybean meal 2.54E-02 kg GREET 
Corn grain (ground, dry) 4.01E-03 kg New model (corn silage) 
Distiller's dried grains with solubles 4.62E-03 kg GREET 
Energy from diesel burned in machinery 3.67E+01 Btu GREET 
Output     
FPCM 1.00E+00 kg   
Methane, biogenic 8.52E-03 kg   
Ammonia 2.14E-03 kg   
Nitrogen oxide 9.72E-05 kg   
CO2, biogenic 5.23E-01 kg   
N2O 3.69E-04 kg   

Table S19. LCI of 1 kg Alfalfa Feed Production for Immature Cows (Dry Mass, Adjusted Based on 
Available Fertilizer in GREET Model) 

Input Quantity Unit 
Herbicides 4.20E-04 kg 
Pesticides 1.00E-04 kg 
Energy from diesel burned in machinery 8.51E+02 Btu 
P2O5, fertilizer 6.51E-03 kg 
K2O, fertilizer 3.14E-02 kg 
CaCO3, fertilizer 1.62E-01 kg 
Output   
Alfalfa feed for immature cows (dry matter) 1.00E+00 kg 
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Table S20. LCI of 1 kg Alfalfa Feed for Mature Cows (Adjusted Based on Available Fertilizer in 
GREET Model) 

Input Quantity Unit 
Herbicides 4.20E-04 kg 
Pesticide 1.00E-04 kg 
Energy from diesel burned in machinery 5.78E+02 Btu 
P2O5 6.51E-03 kg 
K2O 3.14E-02 kg 
CaCO3 1.62E-01 kg 
Output   
Alfalfa feed for mature cows (dry matter) 1.00E+00 kg 

Note: Seed production is excluded from the inventory based on Grant and Hicks (2018) 

Table S21. LCI of 1 kg Corn Silage Feed (Dry Mass) 

Input Quantity Unit 
Nitrogen fertilizer 7.15E-03 kg 
P2O5, fertilizer 5.16E-03 kg 
Energy from diesel burned in machinery 6.47E+02 Btu 
Pesticides 3.00E-04 kg 
CaCO3, lime fertilizer 2.97E-02 kg 
K2O, fertilizer 1.24E-02 kg 
Output   
Corn silage (dry mass) 1.00E+00 kg 

Table S22. LCI of 1 kg Cotton Seed Production 

Input Quantity Unit 
P2O5, fertilizer 2.12E-02 kg 
Energy from diesel burned in machinery 9.69E-02 MJ 
Electricity 3.47E-02 kWh 
Liquified petroleum gas, at refinery 2.70E-02 L 
Herbicides 0.00055 kg 
Pesticides 0.00012 kg 
CaCO3, fertilizer 6.00E-03 kg 
K2O, fertilizer 1.62E-02 kg 
Nitrogen, fertilizer 1.85E-02 kg 
Natural gas 7.00E-07 m3 
Output   
Cotton feed (dry mass) 1.00E+00 kg 
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Table S23. Material and Energy Inputs for Milk Processing (Pasteurizing) 

Input Quantity Unit 
Milk 1.00E+00 kg 
Natural gas (industrial boiler) 7.12E+01 Btu 
Liquified petroleum gas (industrial boiler) 2.03E+00 Btu 
Gasoline (combustion) 2.30E+01 Btu 
Transport distance 4.08E-01 tkm 

Table S24. LCI of Cream Production 

Inputs Quantity Unit 
Raw milk 3.78E+00 kg 
Water 2.33E+00 kg 
NaOH 1.48E-03 kg 
HNO3 1.30E-04 kg 
Electricity 3.18E+02 Btu 
Natural gas 2.61E+02 Btu 
Output   
Cream 1.00E+00 kg 
Wastewater 6.71E+00 kg 

LCI of Soy PC 
The soy PC is extracted from soybean. The LCI of soybean (13% water) farming, harvesting, and 
transportation to a soy PC production plant was obtained from the GREET model. The LCI of 
soy PC extraction from soybean (13% water) was obtained from Philis et al. (2018), and the LCI 
data were allocated based on mass or price as shown in Table S25. The protein content for soy 
PC is 62% according to literature (Philis et al. 2018), and it is assumed that the algae-based 
protein coproduct with protein content of approximately 72% can be used to replace it with three 
replacement metrics: mass, protein content, and digestible protein. The replacement ratio can be 
found in Table 2.2.10. Detailed LCI based on mass and price allocation can be found in Table 
S26.  

The soy PC is investigated here to represent the protein ingredient market. Algal protein 
coproducts can also be used to replace other compounds, such as animal feed supplement, animal 
feed, and food and beverages. The LCI and LCAs of animal feed supplement, such as soybean 
meal and alfalfa meal supplement, were also investigated here for comparison purposes, and 
detailed information can be found in the next section. 

Table S25. Mass and Price Allocation for Soy PC 

Product Mass Allocation $ Allocation 
Soy PC, 8% water 49.8% 75.4% 
Soybean, hulls 6.8% 0.8% 
Soybean, crude oil 16.6% 20.7% 
Soybean, molasses 26.8% 3.1% 
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Table S26. LCI of Soybean PC Production With Mass and Price Allocation 

Inputs Mass Allocation $ Allocation Units 
Soybean (water content 13%) 9.23E-01 1.40E+00 kg 
Diesel, extraction 3.58E+02 5.42E+02 Btu 
Electricity, extraction 9.44E+02 1.43E+03 Btu 
Natural gas, extraction 6.30E+02 9.53E+02 Btu 
Process water 2.31E-01 3.49E-01 kg 
Output    
Soybean PC, 8% water 1.00E+00 1.00E+00 kg 
Wastewater 1.53E-01 2.32E-01 kg 

Soybean PC is the main product, and multiple coproducts are generated in the production 
process. To assess the environmental impacts associated with soybean PC production, allocation 
methods have been utilized. However, it is important to note that these allocation methods can 
introduce uncertainties. To address this, both mass and economic value allocation methods have 
been employed to estimate GHG emissions. Furthermore, it should be acknowledged that the 
inclusion of ILUC can influence the environmental outcomes, adding further variability to the 
results. The ILUC carbon emissions caused by the increasing demand for soybean PC will 
contribute to the overall carbon footprint, particularly considering the deforestation associated 
with soy production. LUC has been identified as the primary contributor to carbon emissions in 
Brazil, accounting for approximately 36% of the country’s total emissions in 2010–2015 
(Escobar et al. 2020). Consequently, the incorporation of ILUC carbon emissions will increase 
the GHG emissions associated with soybean PC production, resulting in higher environmental 
credits for soybean PC. However, the consideration of ILUC falls outside the scope of this 
project, and we will explore the variation in GHG emissions with ILUC inclusion in other future 
work. To provide an understanding of the additional environmental credits that can be achieved 
through the increased GHG emissions of soybean production, we also estimated the GHG 
emissions generated from soybean PC by doubling the GHG emissions of soybean production. 
The results can be found in the “LCA Result Details and Supporting Information” section in the 
Appendix. 

LCI of Animal Feed Supplement 
In recent years, microalgae have been considered as a valuable feed supplement or substitute for 
conventional protein sources, such as soybean meal, alfalfa meal, fishmeal, and rice bran. As one 
scenario in this report, it is assumed that microalgae solid coproduct from HTL can be used to 
replace animal feed supplement, and the environmental credits by using solid coproduct to 
replace animal feed supplement, including fossil energy, water consumption, and GHG 
emissions, are evaluated. 

It has been found that replacing animal feed supplement with microalgae protein does not incur 
significant impacts on feed intake, overall growth, or yield (e.g., milk yield), regardless of 
whether microalgae is used as a feed supplement or substitution for conventional protein sources 
(Table S27). It is noticeable that different microalgae species may lead to different performances, 
since they have different compositions. However, for simplification purposes, it is assumed that 
when the microalgae species (Tetraselmis striata) used in this study serves as animal feed 
supplement, it has similar performance with other microalgae species used to replace soybean 
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meal or alfalfa meal in different cases. In addition, compared with microalgae, solid microalgae-
based protein coproduct does not contain significant fermentable carbohydrates or lipids, the 
latter of which are transformed into SAF and renewable diesel. However, the main reason for 
using microalgae for animal feed supplement is the high protein and amino acids, and the protein 
and amino acids in solid coproduct are intact and can be used to replace soybean meal or alfalfa 
meal. Mass, protein content, and digestible protein were used to calculate the replacement ratios 
by using microalgae protein coproduct to replace soybean meal or alfalfa meal. A 100% 
replacement ratio was achieved when mass was used as the matching unit. The replacement ratio 
by using protein content and digestible protein can be found in Table 2.2.10. 

Table S27. Literature Review on the Replacement of Animal Feed Supplement With Microalgae 

Microalgae Species Animals Percentage of 
Replacement 

Function Effects on 
Growth or 
Yield 

Reference 

Tetraselmis sp. CTP4 
(defatted) 

Juvenile 
gilthead 
seabream 
(Sparus 
aurata) 

10% of dehulled 
SBM a is 
replaced with 
defatted 
microalgal 
biomass 

Substitution 
of protein 
source 

Not 
significant 

Pereira et 
al. (2020) 

Spirulina platensis Meat type 
chicken 

50%, 75%, and 
100% of SBM is 
replaced with 
SPI b 

Substitution 
of protein 
source 

Not 
significant 

Neumann, 
Velten, and 
Liebert 
(2018) 

Spirulina (Arthrospira 
platensis) 

Dairy cow 6% SBM is 
replaced with 5% 
of SPI 

Feed 
supplement 

Not 
significant 

Manzocchi 
et al. 
(2020) 

Spirulina platensis, 
Chlorella vulgaris, 
and Nannochloropsis 
gaditana  

Dairy cow 16.5% SBM is 
replaced with 
10% SPI, 11.9% 
CHL,c or 7.1% 
CHL-NAN d 

Feed 
supplement 

  Lamminen 
et al. 
(2019) 

Scenedesmus 
quadricauda and 
Chlorella vulgaris 

Freshwater 
rotifer, E. 
dilatata 

100% of alfalfa 
meal is replaced 
with SQ e or CHL 

Substitution 
of protein 
source 

Not 
significant 

Farhadian, 
Daghighi, 
and Dorche 
(2013) 

a Soybean meal 
b Spirulina platensis 
c Chlorella vulgaris 
d Mixture of Chlorella vulgaris and Nannochloropsis gaditana (1:1 on dry matter basis) 
e Scenedesmus quadricauda.  
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LCA Result Details and Supporting Information 

LCA Results for the FO Membrane 
The LCA results for the FO membrane are presented in Table S28. No comparisons with the 
literature were made due to limited available data. 

Table S28. Fossil Energy, Water Consumption, and GHG Emissions From the FO Membrane 
System To Treat 1 L of Water 

  FO Membrane System Unit 

Fossil energy 5.62E-03 MJ/L of treated water 
Water consumption 2.39E-04 gal/L of treated water 
GHG emissions 7.17E-01 g CO2e/L of treated water 

LCA Results and Validation for Whey PC 
The calculated results of whey PC were compared with findings from literature sources, as 
shown in Figure S2 and Table S29. The analysis revealed that a wide range of GHG emissions 
can be attributed to three main factors: the allocation factor, GHG emissions from cheese 
production, and the consumption of liquid whey in whey PC production. When comparing the 
results, GHG emissions from cheese production were found to vary from 4.7 to 14.4 kg CO2e/kg 
of cheese production, while the liquid whey consumption exhibited variability based on 
assumptions regarding the protein content of liquid whey. Although the latter two factors 
contribute to the uncertainties in whey PC production, the allocation methods employed play the 
most significant role in introducing uncertainties. As shown in Table S30, GHG emissions 
resulting from liquid whey production ranged from 0.74 to 8.51 kg CO2e/kg of dry mass of liquid 
whey. Consequently, the environmental credits attributed to whey PC production were presented 
as a range, with the average value obtained from the economic allocation method (14.6 kg 
CO2e/kg), the minimum value obtained by excluding the impacts from liquid whey production 
(0.9 kg CO2e/kg), and the maximum value obtained through the solid content allocation method 
(46.3 kg CO2e/kg). 
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Figure S2. Comparison of GHG emission results with the literature 

Table S29. Comparison of GHG Emission Results With Literature 

 GHG Emissions from 
Literature 

Results Calculated by GREET Model 

 Allocation 
methods 

Economic Value of fat 
and protein 
(1:1.4) and 

mass 

Process-
based 
mixed 

Excluding the 
impacts from 
liquid whey 
production 

Economic Solid 
content 

Nutritional 
value 

Whey PC 
(35% 
protein) 

13.3 10.4 20.8 0.5 8.2 26.0 17.1 

Whey PC 
(60% 
protein) 

23.5 17.8 36.4 0.9 14.4 45.4 29.9 

Whey PC 
(80% 
protein) 

32.5 23.7 50.7 1.2 20.0 63.3 41.6 

References Bacenetti 
et al. 

(2018) 

Allocation 
based on 

the value of 
fat and 
protein 
(1:1.4) 
(Flysjö, 

Thrane, and 
Hermansen 

2014) 

Kim et al. 
2013 

 Aguirre-
Villegas et 
al. (2012) 

Aguirre-
Villegas 

et al. 
(2012) 

Aguirre-
Villegas et 
al. (2012) 
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Table S30. LCA Results Validation With Literature for 1 kg of Liquid Whey 

Parameter GHG 
Emissions Units Notes Reference 

Production of 
barley (ready for 
use at the farm) 

0.74 kg CO2e/kg of 
barley dry mass 

System expansion Kristensen 
et al. 
(2015) 

Whey powder 0.56 kg CO2e/kg whey 
powder 

Economic allocation (cheese: 
7.49 kg CO2e/kg; 7% is 
allocated to whey powder)  

González-
García et 
al. (2013) 

Whey powder 2.55 kg CO2e/kg whey 
powder 

Mass allocation (33% is 
allocated to whey powder) 

González-
García et 
al. (2013) 

Liquid whey 7.35 kg CO2e/kg liquid 
whey (dry mass) 

Process-based mixed allocation 
method and GREET (cheese: 
8.34 kg CO2e/kg) 

Kim et al. 
(2013) 

Liquid whey 8.51 kg CO2e/kg liquid 
whey (dry mass) 

LCI and solid content allocation 
and GREET (cheese: 4.71 kg 
CO2e/kg) 

Aguirre-
Villegas et 
al. (2012) 

Liquid whey 5.28 kg CO2e/kg liquid 
whey (dry mass) 

LCI and nutritional value 
allocation and GREET (cheese: 
6.50 kg CO2e/kg) 

Aguirre-
Villegas et 
al. (2012) 

Liquid whey 2.04 kg CO2e/kg liquid 
whey (dry mass) 

LCI and economic value 
allocation and GREET (cheese: 
8.28 kg CO2e/kg) 

Aguirre-
Villegas et 
al. (2012) 

LCA Results and Validation of Upstream Data for Liquid Whey Production 
The LCIs of liquid whey production were obtained from two sources (Kim et al. 2013; Aguirre-
Villegas et al. 2012), and detailed inventories can be found in Tables S15 and S16. To ensure the 
data quality of liquid whey production, the LCA results for its upstream data were also 
compared. The main upstream feedstock for cheese and liquid whey production are milk and 
cream, and the LCA results for these two were compared with literature results and shown in 
Tables S31 and S32. 

Table S31. LCA Results Validation With Literature for 1 kg of FPCM Production 

  This 
Study 

Mean Value (Grant 
and Hicks 2018) a 

Mean Value (Till Milk Production) 
(Grant and Hicks 2018) 

Fossil energy (MJ/kg FPCM) 2.4 3.0 ~2.6 
GHG (g/kg FPCM) 0.8 2.8 ~1.3 

a The values given by Grant and Hicks (2018) are cradle-to-gate data, which include the impacts from 
retail. The impacts from cradle to milk production (excluding retail) are estimated from the figure obtained 
from Grant and Hicks. 

Table S32. LCA Results Validation With Literature for 1 kg of Cream Production 

  This Study Djekic et al. (2014) 
GHG (g/kg cream) 3.0 3.52–4.53 

LCA Results and Validation for Soy PC 
As shown in Table S33, the LCA results of soybean PC were compared with the results of 
soybean meal and soybean production in the GREET model and soybean production in Brazil 
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from literature (Escobar et al. 2020). It should be noted that the current upstream data used in 
this study for soybean PC production are based on average U.S. conditions. However, it is likely 
that the microalgae PC coproduct will be used to replace marginal soybean PC due to increasing 
demand. Therefore, the microalgae PC coproduct will be utilized as a replacement for soybean 
PC or soybeans produced in countries like Brazil, which is the world’s largest soybean exporter. 
From the comparison, the GHG emissions from soybean production with U.S. average data is 
about half of those with Brazil average data, which can be explained by the inclusion of LUC 
carbon emissions. Consequently, the environmental credits attributed to soybean PC production 
were also presented as a range, with the minimum value obtained through mass allocation (0.5 
kg CO2e/kg), the average value obtained through economic allocation (0.7 kg CO2e/kg), and the 
maximum value obtained by doubling the GHG emissions of soybean production and applying 
economic allocation (1.2 kg CO2e/kg). 

Table S33. LCA Results Validation With Literature for 1 kg of Soy PC (62% Protein Content) (Philis 
et al. 2018; Escobar et al. 2020) 

 This Study (Soybean PC, 62% 
Protein Content) U.S. Average Brazilian 

Average 
  Mass Allocation Economic 

Allocation 
Soybean 

Meal Soybean Soybean 

GHG (g CO2e/kg) 454.3 687.4 476.4 345.3 690 
Fossil energy (MJ/kg) 4.3 6.5 3.4 1.6  
Water consumption (L/kg) 79.5 120.4 85.9 85.6  

Environmental Impacts Comparison Between Whey PC and Soy PC 
As shown in Figure S3, GHG emissions are compared between whey PC and soybean PC. It is 
clear that whey PC has higher GHG emission credits than soybean PC with current allocation 
and assumptions. However, the specific products that the microalgae PC coproducts will replace 
remain uncertain. The decision will depend on many factors, such as the rising demand for 
protein, public acceptance, current production, and trade conditions of existing products, as well 
as the economic benefits associated with meeting the increasing protein demand. Furthermore, 
careful consideration has been given to the assessment of environmental impact uncertainties and 
variations arising from allocation methods and ILUC. It should be noted that soybean PC may 
potentially provide more substantial environmental credits as a result of higher carbon emissions 
resulting from ILUC. By replacing whey PC and soybean PC, the range of environmental credits 
obtained provides us with a more comprehensive understanding of the potential environmental 
benefits. This approach allows for a clearer perspective on the extent of environmental credits 
that can be achieved. 
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Figure S3. GHG emissions credit average, minimum, and maximum values estimated from 

different methods 

LCA Results for Soybean Meal and Alfalfa Meal 
Table S34. Fossil Energy, Water Consumption, and GHG Emissions From Soybean Meal and 

Alfalfa Meal 

  Soybean Meal Alfalfa Meal 
GHG (g CO2e/kg) 476.4 227.2 
Fossil fuel (MJ/kg) 3.4 3.8 
Water consumption (gal/kg) 22.7 169.0 

Direct Land Use Change 

 
Figure S4. Carbon emissions from LUC (from original use to algae pond) 

As shown in Figure S4, the maximum DLUC carbon emissions (9.3 g CO2e/MJ) are generated 
from Pierson, Florida, due to 59% of original land from deforestation. The average LUC carbon 
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emissions from all sites are 1.0 g CO2e/MJ, which is relatively small compared to the emissions 
from the supply chain. 

LCI of the System and Associated GHG Emissions 
Table S35. LCI of the System and Associated GHG Emissions in Site 1670 (With Median GHG 

Emissions) 

CO2 capture, transport, and compression (per kg CO2) 

Item Units Quantity 
GHG (g 

CO2e/unit) 

Total GHG 
(g CO2e/kg 

CO2) 
Capture (kWh/kg CO2) kWh 0.30 1,057 316 
Transport (kWh/kg CO2) kWh 0.0012 1,057 1.3 
CO2 capture, transport, and compression (per kg 
CO2)    317 
Algae growth (per kg AFDW, with recycling) 

Item Units Quantity 
GHG (g 

CO2e/unit) 

Total GHG 
(g CO2e/kg 

AFDW) 
Resource consumption     
Electricity (kWh/kg AFDW) kWh 0.58 440 253 
CO2 (kg/kg AFDW) kg 1.7 317 525 
Urea (kg/kg AFDW) kg 0.059 1,222 72 
(NH4)2HPO4 (kg/kg AFDW) kg 0.010 1,741 18 
FO membrane unit kg 0.007   
Total process water input (freshwater) kg 278   
Output stream     
Water in biomass product stream (kg/kg AFDW) kg 9.0   
Water sent to blowdown (kg/kg AFDW) kg 228   
Conversion 

Item Units 

Quantity 
(units/MJ 

RDe a) 
GHG (g 

CO2e/unit) 

Total GHG 
(g CO2e/MJ 

RDe) 
Biomass input     
Algae biomass (kg AFDW/MJ RDe) kg 0.14 868 124 
Fuel products     
Renewable diesel (MJ/MJ RDe) MJ 0.17   
Naphtha (MJ/MJ RDe) MJ 0.22   
SAF (MJ/MJ RDe) MJ 0.60   
Gasoline (MJ/MJ RDe) MJ 0   
Total (MJ fuels) MJ 1   
Coproducts     
PC production kg 0.050 14,616 −579 
Energy inputs     
Electricity demand (kWh/MJ RDe) kWh 0.092 440 41 
Natural gas (Utility) (MJ/MJ RDe) MJ 0.20   
Natural gas (H2 production) (MJ/MJ RDe) MJ 0.15   
Natural gas (summer/spring algae drying) (MJ/MJ 
RDe) MJ    
Total natural gas (MJ/MJ Rde) MJ 0.35 45 16 
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Chemicals and water demand Units 

Quantity 
(units/MJ 

RDe a) 
GHG (g 

CO2e/unit) 

Total GHG 
(g CO2e/MJ 

RDe) 
Sulfuric acid (kg/MJ RDe) kg 0.0014 43 0.061 
Hydrotreatment catalyst (kg/MJ RDe) kg 1.7E-05 3192 0.055 
Hydrocracking catalyst (kg/MJ RDe) kg 3.0E-07 3192 9.6E-04 
Membrane flocculant (kg/MJ RDe) kg 0.0016 1272 2.0 
NaOH (kg/MJ RDe) kg 5.5E-05 1241 6.8E-02 
Water (process demands) (gal/MJ RDe) gal 0.036 0 0 
HCl (kg/MJ RDe) kg 1.1E-05 1985 2.1E-02 
CO2 capture, transport, and compression (g per 
MJ RDe)    73 
Algae growth (g per MJ RDe)    49 
Conversion (g per MJ RDe)    67 
Coproduce credits (g per MJ RDe)    -27 
Overall (g CO2e/MJ RDe)    162 

a Renewable diesel equivalent. 
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